Part:BBa_K4260001
Design
The TecCEM team 2022 designed this sequence for the codification of the Human Estrogen Receptor Alpha (hERa), this is a receptor protein which aim is to bind to estrogens. This protein keeps important amino acids sites Gly521, His524, Leu525 and Met528. It is also used as the biological receptor of some endocrine disrupting chemicals.
Therefore, we used the genomic coding sequence of Homo sapiens Estrogen Receptor 1 (ESR1) optimizing its codons for an E.coli expression. We added a (GGGGSC) linker, this one is composed of four glycines, one serine and one cysteine, with the purpose of attaching hER alpha protein to chitosan, thus, ensuring the desired position of the molecule showing the estrogen binding site up for an effective capture. The periplasmic signal peptide element “OmpA” helps the cellular machinery to speed up the process of protein expression and send it to the periplasmic space, where it can be purified using the histidine tag for a nickel column. Figure 1 illustrates the detailed design of this part.
Figure 1. Construct sequence design.
Table I. Recopilation of the elements of the construct. [1]
ESR1_HD shortlist resume
Function
Periplasmic expression of Human Estrogen Receptor Alpha protein
Optimization for
E.coli strains
Signal Peptide
OmpA-periplasmic expression
Linker
GGGGSC - to create disulfide bonds with chitosan
Added tags
Histidine tag for Nickel Column
Sources, usage and biology.
Human Estrogen Receptor alpha Profile:
Name : Estrogen Receptor Alpha Origin: Homo sapiens Synonyms: ER; ESR; Era; ESRA; ESTRR; NR3A1 Base Pairs: 2111 bp CDS: coding sequence from nucleotide 232 to 2019 of mRNA from NM_000125.4 isoform 1. [2] Gene type: protein coding Properties: It's affinity to estrogens, estradiol, and endocrine disrupting chemicals.
Nuclear transcription factor whose biological duty is to regulate cellular signaling to enhance physiological processes in humans, in the body it needs hER beta to create a functional complex. For the matter of the project, only the hER alpha is going to be described. ESR1 comes from genomical Homo sapiens ESR1. It contains the elements for coding a protein including its N-terminal ligand transactivation domain, DNA binding domain, hinge domain and the C- terminal ligand transactivation domain (retrieved from NCBI). hER alphas role is to keep on going the regulation of transcriptional genes inducible by estrogens, thus, enhancing cellular signaling corresponding to metabolic, endocrine, nervous, reproductive systems between others.
Linker Linkers are short amino acid sequences that act as spacers between protein domains within a protein. The ones containing Glycines are flexible, separating domains and mostly, creating covalent bonds between proteins. Adding Serine as a polar residue reduces linker protein interaction preserving protein function [3]. Finally, the last residue being cysteine was added to create a disulfide bond with chitosan for surface immobilization, thus keeping the strategy developed by TecCEM 2021 [4] [5]
Omp A Last but not least, OmpA (Outer membrane protein) signal peptide was retrieved from literature because of its efficiency as periplasmic expression signal peptide [5].
References
[1] TecCEM 2022 [2] NCBI Gene ID: 2099 https://www.ncbi.nlm.nih.gov/gene/2099 [3] Joshua S. Klein, Siduo Jiang, Rachel P. Galimidi, Jennifer R. Keeffe, Pamela J. Bjorkman, Design and characterization of structured protein linkers with differing flexibilities, Protein Engineering, Design and Selection, Volume 27, Issue 10, October 2014, Pages 325–330, https://doi.org/10.1093/protein/gzu043 [4] Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. doi:10.1016/j.addr.2012.09.039 [5] TecCEM 2021https://2021.igem.org/Team:TecCEM [6] Goulas T, Cuppari A, Garcia-Castellanos R, Snipas S, Glockshuber R, Arolas JL, et al. (2014) The pCri System: A Vector Collection for Recombinant Protein Expression and Purification. PLoS ONE 9(11): e112643. https://doi.org/10.1371/journal.pone.0112643
None |