Part:BBa_K3753000
PAAS-Petunia
Petunia hybrida hybrid phenylacetaldehyde synthase (PAAS) is capable of transforming L-phenylalanine (L-phe) into phenylacetaldehyde by oxidative decarboxylation. Subsequently, phenylacetaldehyde can be reducted into phenylethanol, which possesses elegant, fascinating and long-lasting fragrance.
Characterization
The figure above shows the changes of biomass concentration in WT, BY4741-pRS426-Petunia, BY4741-pRS426-Vanda, BY4741-pRS426-Rosa yeast over time. The OD600 of different strain cultures is measured at the designated time points (0h, 24h,48h,72h). The result shows that the growth trend of the recombinant strain is basically the same as the wild-type strain, indicating that the introduction of heterogeneous gene has no significant effect on the growth of yeast.
Saccharomyces cerevisiae BY4741 contains Ehrlich pathway and other metabolic pathways to operate simultaneously to produce 2-PE, so the wild-type of BY4741 has a certain amount of 2-PE production (1.205g/L). After the introduction of heterogeneous paas gene, the 2-PE production has remarkablely increased. Among them, the production of 2-PE produced by the yeast strain which was introduced petunia-paas increased the most(1.570g/L), followed by the strain which was introduced vanda-paas (1.514g/L) and rosa-paas (1.341g/L).
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal XbaI site found at 60
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal XbaI site found at 60
- 25INCOMPATIBLE WITH RFC[25]Illegal XbaI site found at 60
- 1000COMPATIBLE WITH RFC[1000]
chassis | Saccharomyces cerevisiae |