Coding

Part:BBa_K3843005

Designed by: Anthony Dang   Group: iGEM21_Waterloo   (2021-10-01)
Revision as of 06:40, 1 October 2021 by Anthneedee (Talk | contribs)


Affinity-improved monomeric streptavidin (mSA2+)

Streptavidin is a highly useful protein in molecular biology due to its high-affinity non-covalent interaction with biotin, a small molecule. This makes the biotin-streptavidin duo valuable as an affinity tag system. However, overexpression of streptavidin can be complicated by its tetrameric nature, making it harder to obtain large amounts for use in diagnostic assays. In a similar sense, the tetrameric nature of streptavidin makes it a bulky and non-optimal protein for use in a translational fusion protein. This is because bulkier fusion proteins tend to exhibit a higher risk of aggregation and instability, which is accentuated by the presence of multiple subunits. To mitigate these complications of working with streptavidin, __________ engineered a monomeric streptavidin using rational protein design. This engineered monomeric streptavidin (henceforth referred to as mSA2) eliminates the complications mentioned above, but displays a markedly lower affinity for biotin than its tetrameric counterpart (CITE). The existing part for monomeric streptavidin is BBa_K1896000.

This part is an improvement of BBa_K1896000. In hoping to further improve mSA2’s binding affinity to biotin for use in a diagnostic microfluidic assay, Waterloo iGEM (2021) used a computational workflow to perform rational protein design on mSA2. Each amino acid of mSA2 was iteratively mutated to determine the mutations yielding the lowest computational energy scores for the biotin-streptavidin complex, corresponding to improved binding.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None