Coding

Part:BBa_K3504011

Designed by: Ahmed Wael   Group: iGEM20_AFCM-Egypt   (2020-10-09)
Revision as of 08:41, 22 October 2020 by AhmedAdel01 (Talk | contribs) (Usage)


Multi-Epitope TNBC Vaccine Version (1)

Part Description

A multi-epitope vaccine formed of highly expressed and specific TNBC neo-epitopes and specifically chosen according to egyptian population alleles which can work as a generalized vaccine and also personalized vaccine which would illicit an immune response specific to TNBC tumor cells

Usage

An adjuvant (45 amino acid long β-defensin) was bound with the aid of the EAAAK linker at the start (to the MEV N-terminal). EAAAK linker reduces connection with other protein areas with efficient detachment and increases stability [88,89]. The vaccine’s immunogenicity may increase with an adjuvant. Epitopes were merged together based on their interaction’s compatibility in a sequential manner with AAY and GPGPG linkers, respectively. AAY and GPGPG prevent the production of junctional epitopes, that is the main task in the construction of multiepitope vaccines; on the other hand, they promote the immunization and epitope presentation. Further, CTL-epitopes were connected with AAY linkers and HTL epitopes with GPGPG which permit proficient dissociation and identification of each epitope. Heat Shock Protein (hsp) was retrieved from the database to design a multi-epitope subunit vaccine containing a CTL, HTL and BCL epitopes of varying length. Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). The uptake of hsp complexes by DC enables efficient capture and presentation of pathogen-specific antigens and the mounting of a specific immune response through the generation of CD4+ T-cell responses.

References :

Tahir ul Qamar, Muhammad, et al. “Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach.” Vaccines, vol. 8, no. 2, 1 June 2020, p. 288, www.mdpi.com/2076-393X/8/2/288/htm, 10.3390/vaccines8020288. Accessed 22 Oct. 2020.

McNulty, Shaun, et al. “Heat-Shock Proteins as Dendritic Cell-Targeting Vaccines - Getting Warmer.” Immunology, vol. 139, no. 4, 2 July 2013, pp. 407–415, 10.1111/imm.12104. Accessed 18 Nov. 2019.

Characterization

Improvements

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 120
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 120
    Illegal NotI site found at 44
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 120
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 120
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 584
    Illegal BsaI.rc site found at 935
    Illegal SapI.rc site found at 853


[edit]
Categories
Parameters
None