Coding
Cav1

Part:BBa_K2922040

Designed by: Gezhi Xiao   Group: iGEM19_XMU-China   (2019-10-13)
Revision as of 20:10, 21 October 2019 by Jisheng Xie (Talk | contribs) (Biology and Usage)


Caveolin-1 coding region

Summary

This part contains the coding region of caveolin-1 (CAV1) gene, which naturally exists in many vertebrate cells. This gene could produce a kind of vesicle named caveolae in cell surfaces of mammals. According to a recent study, through heterologous expression of caveolin-1, heterologous caveolae (h-caveolae) will be observed in the cytoplasm of E. coli, where they can play the role of endocytosis (1,2). Therefore, we used caveolin-1 to perform endocytosis in E.coli.

Figure 1. Schematic diagram of action principle for CAV1

Biology and Usage

The CAV1 gene derived from the human genome was chosen. By codon optimization, the sequence suitable for expression in E. coli was constructed, and we hoped that it could exert endocytosis in E. coli. Furthermore, this part was used to construct several composite parts.

The coding cequence of target gene CAV1 was inserted into an expression vectors with T7 and RBS to obtain BBa_K2922042. We transformed the constructed plasmid into E. coli BL21 (DE3) to verify its successful heterologous expression.

Figure 2. The BBa_K2922042 was constructed to verify the expression in E.coli

Identification

After receiving the synthesized Part DNA, restriction digest identification was done to certify the plasmid is correct, and and the experimental results were shown in Fig. 1. A separate fragment is 537 bp.

Fig 2.DNA gel electrophoresis of restriction digest products of DH-Cav1-pUC57 (Xbal I & Pst I sites)


Verify the expression of CAV1

We used T7 promoter to highly express CAV1 in E. coli in our composite part BBa_K2922042. After heterologous protein expression, no target bands were observed through SDS-PAGE. However, according to literature, vesicles formed from CAV1 on the inner membrane of E. coli which could hardly be detected through SDS-PAGE technique. So, 5(6)-carboxyfluorescein, a fluorescent molecule, which could pass through the outer membrane but not the inner membrane (2) was selected to check if it can perform endocytosis. After induction, 5(6)-carboxyfluorescein was added to the medium and cultured for 24 h. As shown in Fig. 1, compared with the faint yellow color in control group, significant color change (orange-yellow color) was observed by naked eyes in the CAV1 group, which came from fluorescent dye. The rod-shaped fluorescence appeared in the CAV1 group obviously, and its relative position was consistent with that of bacteria in the bright field (Fig. 2).

Fig. 2. (A) Different colors of experimental group (BBa_K2922042) and control group (BBa_K525998) were shown after incubation with 5(6)-carboxyfluorescein, regardless of the operations of centrifugation or resuspension. (B) The photos taken by fluorescence microscopy showed significant difference between experimental group and control group.Scale bar = 1 μm.

Reference

1. J. Shin et al., Display of membrane proteins on the heterologous caveolae carved by caveolin-1 in the Escherichia coli cytoplasm. Enzyme Microb Technol 79-80, 55-62 (2015).
2. J. Shin et al., Endocytosing Escherichia coli as a Whole-Cell Biocatalyst of Fatty Acids. ACS Synthetic Biology 8, 1055-1066 (2019).


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None