Composite

Part:BBa_K2949013

Designed by: Yujie Wang   Group: iGEM19_AHUT_China   (2019-08-12)
Revision as of 17:24, 21 October 2019 by WindGiang (Talk | contribs)


Carbonic Anhydrase 2(L203K)-C-LCTASR

we constructed this new biobrick by connecting the C-terminal of the mutant human carbonic anhydrase 2 [CA2(L203K)] (BBa_K2547004) with the six-residue sulfatase submotif (LCTPSR). Formylglycine generating enzyme can selectively recognize and oxidize the cysteine residues in the sulfatase subunit of the protein terminal to form formylglycine (FGly) residues containing aldehyde groups, which can be immobilized via forming covalent bond with amino functionalized carriers (Unisil 30-100 NH2) through the Schiff base reaction.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


In order to the further improve the industrial application of CA2 for CO2 capture, basing on the existing part (BBa_K2547004) we designed last year, we have constructed a new biobrick[CA2(L203K)-C-LCTPSR](BBa_K2949013) by connecting the C-terminal of the mutant human carbonic anhydrase 2 [CA2(L203K)](BBa_K2547004) coding sequences with the six-residue sulfatase submotif(LCTPSR) in a way similar to that of CA2(L203K)-N-LCTPSR, to achieve enzyme immobilization and maintain high thermal stability and CA2 reuse by modifying its gene sequence.

1. Engineered E.coli TB1

1.1 Construction of CA2(L203K)-C-LCTPSR expression plasmid

The coding sequence of CA2(L203K)-C-LCTPSR(BBa_K2949013) was synthesized, and then cloned into pET-30a(+) expression vector.

Fig.1 Map of CA2(L203K)-C-LCTPSR recombinant vector

The correctness of the obtained recombinant vector was identified by restriction enzyme digestion (Fig.2) and sequencing(Fig.3).

Fig.2 Agarose Gel Electrophoresis of CA2(L203K)-C-LCTPSR recombinant plasmid and its identification by enzyme digestion.
Lane M: DL15000 marker; Lane 1: CA2(L203K)-C-LCTPSR recombinant plasmid; Lane 2: Enzyme digestion band of CA2(L203K)-C-LCTPSR recombinant plasmid, the length was 834 bp (the arrow indicated).
Fig.3 Sequencing results

1.2 Expression and purification of CA2(L203K)-C-LCTPSR protein in E.coli TB1

The expression of CA2(L203K)-C-LCTPSR in E.coli were detected by SDS-PAGE. The results showed that CA2(L203K)-C-LCTPSR could be successfully expressed in our chassis E.coli.(Fig. 4)

Fig.4 SDS-PAGE analysis for CA2(L203K)-C-LCTPSR cloned in pET-30a(+) and expressed in E.coli TB1
Lane 1: CA2(L203K)-C-LCTPSR protein expression without IPTG induction; Lane 2: CA2(L203K)-C-LCTPSR protein expression wit IPTG induction.

We successfully co-transformed pBAD-FGE and pET-30a(+)-CA2(L203K)-C-LCTPSR into E.coli TB1 for the following CA2(L203K)-C-LCTPSR immobilization. Then the improve part of CA2(L203K)-C-LCTPSR protein was further purified through nickel column and detected by SDS-PAGE, as shown in Fig.5.

Fig.5 SDS-PAGE of purified CA2(L203K)-C-LCTPSR protein

2. Identification of the function for CO2 capture

2.1 The efficiency of CA2(L203K)-C-LCTPSR protein immobilization

FGE can selectively identify and oxidize cysteine residues in the sulfatase subunit(LCTPSR) at the end of the protein to form aldehyde-containing formylglycine, which can be used for enzyme immobilization. Then we immobilized CA2(L203K)-C-LCTPSR protein, and our formula for calculating the enzyme immobilized efficiency is as follows:

η: The efficiency of immobilized CA2(L203K)-C-LCTPSR protein;
W1: The concentration of total CA2(L203K)-C-LCTPSR protein;
W2: The concentration of free CA2(L203K)-C-LCTPSR protein.

According to the formula, we got the efficiency of immobilized CA2(L203K)-C-LCTPSR protein is 39.09%.

2.2 Enzyme activity asssay of CA2(L203K)-C-LCTPSR protein

To further demonstrate the activity of our improved part, the enzyme activity of CA2(L203K)-C-LCTPSR (BBa_K2949013) and CA2(L203K) protein (BBa_K2547004) of CO2 capture were tested experimentally by esterase activity assay at 37℃ and 50℃.

As shown in Fig.6 and Fig.7, immobilized CA2(L203K)-C-LCTPSR protein was stable at high temperature and retained its activity, and free CA2(L203K)-C-LCTPSR protein has a higher activity than CA2(L203K) protein.

Fig.6 Esterase activity analysis of free CA2(L203K), free CA2(L203K)-C-LCTPSR and immobilized CA2(L203K)-C-LCTPSR protein at 37℃
Fig.7 Esterase activity analysis of free CA2(L203K), free CA2(L203K)-C-LCTPSR and immobilized CA2(L203K)-C-LCTPSR protein at 50℃

3. Application Model for detecting CO2 capture

Because the immobilized CA2(L203K)-C-LCTPSR protein have higher activity and reuse ability than immobilized CA2(L203K)-N-LCTPSR protein, so the reuse ability of the immobilized CA2(L203K)-C-LCTPSR was tested by our designed simulation model (Fig.8). Compared with the original enzyme, the immobilized enzyme still retained 54 percent activity after five times of repeated absorption experiments of CO2, as indicated in Fig.9. The result showed that the immobilized CA2(L203K)-C-LCTPSR could absorb CO2 under the simulation model and showed potential reuse ability.

Fig.8 Picture of our designed model
Fig.9 The reuse ability of CO2 capture of the immobilized CA2(L203K)-C-LCTPSR under our designed model

In conclusion, our results demonstrated that the function of improved part has been improved with higher activity than original part, especially achieved enzyme immobilization, and the immobilized CA2(L203K)-C-LCTPSR protein showed reuse ability, which might be suitable for industrial production.

[edit]
Categories
Parameters
None