Part:BBa_K741002
plac-RBS-GFP-T
Lac promoter with GFP gene downstream. LacI or glucose can repress the expression of GFP while lactose and IPTG can activates it.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 870
Initially, we use IPTG to activate the promoter plac. However, we find that the leak expression of plac is quite high. Even without the existence of IPTG, GFP expresses. This is because there are no lacI genes on the plasmid bones PSB1C3. And K12 strains can not express enough lacI to repress the expression of plac. We look into some documents and find that glucose can repress the expression of plac(see the character of the plac in the lactose operon).Therefore, we set four experimental groups, adding glucose with concentration of 500mM, 800mM, 1000mM, 1000mM of IPTG and a blank group with nothing added.
From figure 1, we can see the unit fluorescence intensity of experimental groups with glucose added is lower than the blank group, because glucose represses the expression of plac, which reduces the expression of GFP.
At the beginning, we can’t observe the activating effect of IPTG on plac, which we ascribe to the unstability of the promoter plac. About 90 minutes later, the unit fluorescence intensity of experimental groups with IPTG added is higher than the blank group, which indicates IPTG’s activation on plac.
The difference of the unit fluorescence intensity between the experimental groups with different concentrations of glucose added is not strictly related to the increasing amount of glucose, because glucose affects the growth and metabolism of E.coli, which brings uncertainty to our experiments.
About 3 hours later, the difference of the unit fluorescence intensity between the groups abates, because of the consumption of glucose.
Data
Fluorescence intensity | ||||||||||||||||
plac-RBS-GFP-T | ||||||||||||||||
t/min | M9 medium | 0 | 500mM glucose | 800mM glucose | 1000mM glucose | 1000mM IPTG | ||||||||||
Parallel | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
0 | 11.801 | 197.047 | 198.876 | 190.953 | 202.614 | 203.782 | 202.702 | 200.39 | 202.035 | 204.525 | 206.516 | 206.355 | 206.741 | 179.988 | 210.315 | 205.464 |
45 | 13.386 | 214.145 | 213.602 | 219.416 | 223.437 | 241.267 | 224.909 | 244.257 | 235.427 | 243.904 | 224.783 | 235.979 | 239.014 | 209.009 | 214.669 | 224.21 |
90 | 11.541 | 273.664 | 245.629 | 250.211 | 305.733 | 317.547 | 313.495 | 299.869 | 324.396 | 328.157 | 331.194 | 309.167 | 305.24 | 261.801 | 267.369 | 281.328 |
135 | 11.894 | 344.987 | 319.854 | 325.421 | 370.167 | 398.352 | 369.309 | 372.487 | 407.478 | 385.073 | 333.989 | 355.2 | 351.929 | 314.246 | 332.2 | 351.364 |
180 | 11.066 | 424.182 | 425.564 | 389.785 | 415.844 | 463.184 | 378.606 | 447.508 | 456.27 | 449.414 | 311.226 | 441.902 | 456.969 | 338.101 | 304.146 | 349.339 |
OD | ||||||||||||||||
plac-RBS-GFP-T | ||||||||||||||||
t/min | M9 medium | 0 | 500mM glucose | 800mM glucose | 1000mM glucose | 1000mM IPTG | ||||||||||
0 | 0.045 | 0.0726 | 0.0719 | 0.0733 | 0.084 | 0.0829 | 0.0754 | 0.0747 | 0.0807 | 0.0741 | 0.0785 | 0.0883 | 0.0863 | 0.075 | 0.073 | 0.0781 |
45 | 0.0436 | 0.0793 | 0.0792 | 0.0798 | 0.0932 | 0.0743 | 0.0861 | 0.0834 | 0.0909 | 0.086 | 0.0873 | 0.1011 | 0.098 | 0.0835 | 0.0813 | 0.0875 |
90 | 0.0435 | 0.0973 | 0.0978 | 0.1004 | 0.1231 | 0.1222 | 0.1165 | 0.1165 | 0.1172 | 0.1166 | 0.1147 | 0.131 | 0.1255 | 0.0978 | 0.0974 | 0.104 |
135 | 0.0447 | 0.1403 | 0.1367 | 0.135 | 0.1611 | 0.1551 | 0.1625 | 0.1601 | 0.1668 | 0.1609 | 0.1852 | 0.1787 | 0.1755 | 0.1463 | 0.1349 | 0.1218 |
180 | 0.0446 | 0.1995 | 0.2064 | 0.2297 | 0.2414 | 0.2346 | 0.2161 | 0.239 | 0.2405 | 0.2209 | 0.1884 | 0.2627 | 0.23 | 0.1832 | 0.2 | 0.1967 |
Improvement by JNFLS2019
Overview:
None |