DNA

Part:BBa_K2912011

Designed by: Lingling Liao   Group: iGEM19_SZU-China   (2019-10-13)
Revision as of 23:15, 16 October 2019 by LLL (Talk | contribs) (RNA interference technology)


M. micrantha_leaves_ Unigene0029128

This is a single-stranded DNA that can be cyclized by T7 promoter, since it has two sites complementary to T7 promoter. It can transcribe RNA interference (RNAi) molecule by rolling circle transcription, which can silence the gene encoding chlorophyll A-B binding family protein AB80 of M. micrantha, through which we can block this essential matabolic gene expression to kill such invasive weed.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

SZU-China 2019 iGEM team

SZU-China 2019 iGEM team decides to synthesize the Micrancide, an RNAi-based herbicide for M. micrantha, to remove the weed by silencing the essential metabolic gene of it through RNA interference (RNAi) technology.

RNA interference technology

Short-interfering RNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi). RNAi is a biological process in which RNA molecules inhibit gene expression or translation, by neutralizing targeted mRNA molecules. It involves multiple RNA-protein interactions characterized by four major steps:

1. Assembly of siRNA with the RNA-induced silencing complex (RISC)

2. Activation of the RISC
3. Target recognition
4. Target cleavage of mRNA
Hence, inspired by successful examples of RNAi technology, we decided to apply RNAi technology to the development of the herbicide for M. micrantha. ===References=== [1] Kupferschmidt, K. A Lethal Dose of RNA[J]. Science, 2013, 341(6147):732-733. [2] Lee J B, Hong J, Bonner D K, et al. Self-assembled RNA interference microsponges for efficient siRNA delivery[J]. NATURE MATERIALS, 2012, 11(4):316-322. [3] Yan L, Yan Y, Pei L, et al. A G-quadruplex DNA-based, Label-Free and Ultrasensitive Strategy for microRNA Detection[J]. Sci Rep, 2014, 4:7400.
[edit]
Categories
Parameters
None