Coding
TesA Cterm

Part:BBa_K3038002:Experience

Designed by: Anne-Claire BOISSON   Group: iGEM19_Poitiers   (2019-10-10)
Revision as of 10:18, 16 October 2019 by Bvannier (Talk | contribs) (Cloning into PSB1A3)


Applications of BBa_K3038002

Characterization of TesA :


Design

Thanks to Geneious software we have designed a gene with a promoter, and a tag. This part doesn’t have a terminator because its produced to create a composite part with other gene involved in 2-nonanone synthesis. The promoter will therefore be associated with the design of the last gene of the composite part. The promoter is inducible to arabinose. This allows a controlled expression of the synthetic gene to avoid any effect of toxicity. In addition, arabinose is an inexpensive inducer and very present in the laboratories of our university. This part is already exciting with number. But we decided to improve it by adding a 6-his tag. This allows to purify and detect the protein in the host strain by using Ni-NTA columns.

https://parts.igem.org/File:T--Poitiers--TesA_design-tab3.jpg


PCR Amplification

Following the design of the synthetic gene, It is amplified by PCR thanks to the design of primers upstream and downstream of the sequence. After amplification of the synthetic gene, sample is purified, the amplicons are digested with restriction enzymes EcoRI and PstI. Similarly for the cloning vector pSB1A3 according to the protocol described above. The insert (TesA) is then ligated into the plasmid.

The PCR product as well as the digestion products are deposited on 0.8 % agarose gel. In well 2, the TesA tagged with 6 his in C-ter amplified by PCR. The most intense band observed corresponds to the size expected for TesA around 900 pb. Another band, this time very weak, is visible below 400 pb. This band may be due to a specific pairing of the primers.

T--Poitiers--TesA_amplification-tab3.png

Electrophoresis gel photography following deposit of TesA PCR products. The migration was performed at 100 volts for 30 minutes in TAE 1X. The marker used during the migration is NEB 1 kb Plus DNA

Cloning design in PSB1A3

The products of digestion are also loaded on the gel. In well 2 we see the purified PCR TesA product. There is little DNA loss here, which is encouraging. Wells 3 and 4 respectively show the digestion of the plasmid and the TesA gene by the restriction enzymes EcoRI and PstI. This is to form cohesive ends between the two. We obtain bands at the expected sizes, about 2200 pb for the plasmid and 900 pb for the synthetic gene TesA.



It is important to note, however that agarose gel migration does not verify the effectiveness of digestion. Indeed, since the restriction sites are at the end of the sequences, only a few base pairs have been removed on either side. The resolution of an agarose gel does not make it possible to observe the size of the fragments so precisely. This step makes it possible to ensure that we did not have a loss of DNA during experiments.

T--Poitiers--construction_TesA-tab3.jpg



Cloning into PSB1A3

T--Poitiers--TesA_Digestion-tab3.jpg

Electrophoresis photography following deposits on agarose gel 0.8% of enzymatic digestion products. The migration was performed at 100 volts for 30 minutes in TAE 1X. The marker used during the migration is the NEB 1 kb Plus Ladder (left in the figure). Lane 1 corresponds to the marker, lane 2 to the purified PCR product, lane 3 to the digested pSB1A3 plasmid and lane 4 to the digested TesA synthetic gene


The thermocompetent E. coli JM109 bacteria are then transformed and clones are obtained. Different volumes of transformed bacteria are spread on Petri dish with selective medium. The number of clones obtained is consistent with the proportion of bacteria spread on the petri dishes.

T--Poitiers--TesA_Petri_Dish-tab3.jpg

Expression



Activity

User Reviews

UNIQe2bd38f55429336f-partinfo-00000000-QINU UNIQe2bd38f55429336f-partinfo-00000001-QINU