Composite

Part:BBa_K2933270

Designed by: Weisi Wang   Group: iGEM19_TJUSLS_China   (2019-09-15)
Revision as of 14:05, 24 September 2019 by Weisi (Talk | contribs)


RBS+Linker h+His+Linker f+IND-10+T7 terminator

This part consists of RBS,Link h, protein coding sequence(His+Linker f+IND-10) and T7 terminator,and the biological module can be build into E.coli for protein expression. This part can be prefaced with promoters of different strengths and types to regulate expression function.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 93
    Illegal NheI site found at 856
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage and Biology

This composite part is made up with six basic parts(RBS , Linker h, His, Linker f , IND-10 and T7 terminator ). It encodes a protein which is IND-10 fused with His tag. The fusion protein is about 26.9 kD. It is convenient for us to purify our target protein.

Molecular cloning

First, we used the vector pET28a to construct our expression plasmid. And then we converted the plasmid constructed to E. coli DH5α to expand the plasmid largely.

T--TJUSLS China--IND-10 PCR.png T--TJUSLS China--IND-10 PCRmeiqie.png
Figure 1. Left: The PCR result of IND-10. Right: The verification results by enzyme digestion.

After verification, it was determined that the construction is successful. We converted the plasmid to E. coli BL21(DE3) for expression and purification.

References

[1]Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol. 1983;33:580–98.
[2]Chang Y-C, Lo H-H, Hsieh H-Y, Chang S-M. Identification, epidemiological relatedness, and biofilm formation of clinical Chryseobacterium indologenes isolates from central Taiwan. J Microbiol Immunol Infect. 2015;48:559–64.
[3]Chen F-L, Wang G-C, Teng S-O, Ou T-Y, Yu F-L, Lee W-S. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect. 2013;46:425–32.
[4]Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007;74:1686–701.
[5]Zeba B, De Luca F, Dubus A, Delmarcelle M, Simporé J, Nacoulma OG, et al. IND-6, a highly divergent IND-type metallo-beta-lactamase from Chryseobacterium indologenes strain 597 isolated in Burkina Faso. Antimicrob Agents Chemother. 2009;53:4320–6.
[6]Yamaguchi Y, Takashio N, Wachino J, Yamagata Y, Arakawa Y, Matsuda K, et al. Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. J Biochem. 2010;147:905–15.
[7]Perilli M, Caporale B, Celenza G, Pellegrini C, Docquier JD, Mezzatesta M, et al. Identification and characterization of a new metallo-beta-lactamase, IND-5, from a clinical isolate of Chryseobacterium indologenes. Antimicrob Agents Chemother. 2007;51:2988–90.
[8]Bellais S, Léotard S, Poirel L, Naas T, Nordmann P. Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol Lett. 1999;171:127–32.

[edit]
Categories
Parameters
None