Composite

Part:BBa_K2933175

Designed by: Weisi Wang   Group: iGEM19_TJUSLS_China   (2019-09-14)
Revision as of 13:49, 24 September 2019 by Weisi (Talk | contribs) (Usage and Biology)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Tac promoter+RBS a+Linker g+GST+Linker e+VIM-66

This part consists of Tac promoter,RBS and protein coding sequence (GST+Linker e+VIM-66),and the biological module can be built into E.coli for protein expression.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1532
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 181


Usage and Biology

This composite part is made up with six basic parts(Tac promoter,RBS a , Linker g, GST, Linker e and TMB-2). It encodes a protein which is VIM-66 fused with GST tag. The fusion protein is about 54.3 kD. In order to gain the highly purified target protein, we add GST tag in N-terminal of VIM-66 and combine the two parts with the cutting site of Prescission Protease. The fusion protein can be cut off at the cutting site by Prescission Protease. It is convenient for us to purify our target protein.

Molecular cloning

We insert VIM-66 gene into the standard vector then transfer it into E.coli.

VIM-66-PCR.jpeg

Figure 1. Left: The result of PCR, Right:The result of double enzyme digestion verification.LaneM,Marker, Lane1, the plasmid with VIM-66, Lane2, after double enzyme verification

References

1. Yoshihiro Yamaguchi. Wanchun Jin. Kazuyo Matsunaga. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J. Med. Chem.200750266647-6653

2. Biochemical, Mechanistic, and Spectroscopic Characterizationof Metallo-β-lactamase VIM‑2[J]. Biochemistry, 2014, 53(46):7321-7331.

3. Christopeit T , Carlsen T J , Helland R , et al. Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by SPR based fragment screening[J]. Journal of Medicinal Chemistry, 2015:151017114758002.

4. Christopeit T , Yang K W , Yang S K , et al. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor[J]. 2016.

[edit]
Categories
Parameters
None