Composite

Part:BBa_K2533045

Designed by: kangyuan yu   Group: iGEM18_HUST-China   (2018-09-15)
Revision as of 13:44, 17 October 2018 by BoPeng (Talk | contribs)


RBS-mleS

produce latic acid

Usage and biology

dld refers to FAD-dependent D-lactate dehydrogenase which could catalyze D-lactate’s transformation into pyruvate. With the overexpression of dld, Shewanella could utilize D-lactate more efficiently, which brings more electricity being produced.

Characterization

This is one section for lactate utilization part.

Figure1:RBS-mles

DNA Gel Electrophoretic

To make sure that we get the target gene, we did the DNA gel electrophoretic to separate different gene. And here is the result.

File:T--HUST-China--2018-Notebook-tonglu-mles.png
Figure2:Verification of successful transformation of pSB1C3-RBS-mleS

Our target genes are 1969bp, and as the marker is DS5000, we could be sure that the bright bands in this picture are our target genes.

Real-Time Quantitative PCR

To demonstrate that dld could be overexpressed by engineered Shewanella, we did Real-Time Quantitative PCR.

Figure3:Relative expression level of dld in engineered Shewanella Oneidensis MR-1.

As we can see from this figure, dld could be overexpressed by engineered Shewanella. For further verification, we used the engineered bacteria to produce electricity.

Electrogenesis

By comparing the ability of producing electricity, we might find out whether dld could effectively help Shewanella to produce more electricity.

Figure4:The comparison of electricity production between Shewanella contained pYYDT and pYYDT-dld.

It could be demonstrated that targeted genes could be expressed in the engineered cells. More NADH has been produced by engineered bacteria, which helps to produce more electricty.


[edit]
Categories
Parameters
chassisRhodopseudomonas palustris
functionProduction of lactate