Part:BBa_K2665006
AVP1
This is a vacuolar H+-pyrophosphatase of Arabidopsis thaliana. This protein functions as a proton pump on the vacuolar membrane. Several papers have found that overexpression of AVP1 increases the salt tolerance of some plants such as tomato, rice and cotton. Experiments carried out on transgenic plants showed that as the AVP1 expression level increased the accumulation and retention of solutes was higher than that of the wild type.
(reference)
Zhao, F.‐Y., Zhang, X.‐J., Li, P.‐H., Zhao, Y.‐X. and Zhang, H. (2006) Co‐expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol. Breeding, 17, 341–353.
Gao, F., Gao, Q., Duan, X.‐G., Yue, G.‐D., Yang, A.‐F. and Zhang, J.‐R. (2006) Cloning of an H+‐PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J. Exp. Bot., 57, 3259–3270.
Lv, S., Zhang, K., Gao, Q., Lian, L., Song, Y. and Zhang, J.‐R. (2008) Overexpression of an H+‐PPase from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performanc e. Plant Cell Physiol., 49, 1150–1164.
Pasapula, Vijaya, -R. (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions Using AVP1 to improve drought and salt tolerance in cotton. Plant biotechnology journal., 9, 88-99.
Gaxiola, R A.-R. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences – PNAS., 98,11444-11449.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 650
Illegal BglII site found at 1907
Illegal BamHI site found at 1703 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1999
Illegal BsaI.rc site found at 2189
None |