![](https://parts.igem.org/images/partbypart/icon_coding.png)
Part:BBa_K2686002
Encapsulin protein with HexaHistidine insert
This is a BioBrick containing the sequence for Thermotoga maritima encapsulin, a bacterial protein nanocompartment which self assembles to form a 60-mer.
Usage and Biology
The part can be used to deliver cargo, both on the outer surface of the nanoparticle by fusing a peptide in between the 139/140 Amino Acids as well as the protein's C terminus. Cargo proteins can also be loaded inside the nano-cage using a tag binding to Encapsulin's interior surface. The protein is modified with an additonal amino acid sequence (GGGGGGHHHHHHGGGGG) between positions 43/44 granting it better stability and high heat resistance (Moon et al., 2014).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 77
Illegal BglII site found at 492 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 426
Illegal SapI.rc site found at 457
Results
The construct was tested inside a pet14 vector under a T7 promoter and a T7 terminator.
Assembly
The self assembly of the encapsulin 60-mer was first examined using SDS PAGE, where a high band is expected to form due to the high molecular weight and size of the 1.3MDa complex. After having tested a variety of purification procedures, heat purification at 70C for 20 minutes followed by cooling on ice for 15 minutes and a subsequent centrifugation at 12000g for 10 minutes was found to be the most efficient way of isolating the encapsulin.
![](/wiki/images/4/4e/Encapsulins_SDS.png)
References
Moon, H., Lee, J., Min, J. and Kang, S. (2014). Developing Genetically Engineered Encapsulin Protein Cage Nanoparticles as a Targeted Delivery Nanoplatform. Biomacromolecules, 15(10), pp.3794-3801.
None |