Coding

Part:BBa_K2609006

Designed by: Bhaskar Kumawat   Group: iGEM18_IISc-Bangalore   (2018-09-23)
Revision as of 06:26, 13 October 2018 by BhaskarK (Talk | contribs)


imCherry (improved mCherry)

Coding sequence of imCherry, an improved alternative to mCherry (BBa_J18932) that reduces the truncation at the N-term by around 50% thus improving its usage in fusion constructs.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Usage and Biology

Biology

imCherry is an improved version of the fluorescent protein mCherry (BBa_J18932) which is a widely used marker for protein studies. A fusion at the N-term of mCherry however is not a viable method for quantification because of the prominent truncation suffered by the protein near this terminal. This is caused by the presence of a strong RBS sequence upstream of the the ninth amino acid, a methionine encoded by a start codon that acts as a site of initiation. The new part, imCherry is made by modifying this internal RBS sequence such that its translational efficiency is reduced, which thereby reduces truncation. The new part is shown to have truncation reduced by about 50%.(http://2018.igem.org/Team:IISc-Bangalore/Improve)

Usage

The mCherry part was to be used by the 2018 IISc-Bangalore iGEM team for characterization of a N-term signal peptide when they realised that an estimate obtained from truncation prone mCherry would not be accurate. imCherry was created to answer this problem. The sequence at the internal RBS was modified in-silico, and the truncation characterized experimentally using a combination of PAGE and Fluorescent quantification. (See http://2018.igem.org/Team:IISc-Bangalore/Improve).

Characterization

SDS PAGE with the cell lysate. The top band is the non-truncated protein and the the bottom band is the truncated protein.

Expression with BBa_K2609016

The protein was expressed under T7 promoter in E.coli BL21(DE3) with 6x-His tag at the N-terminal. The culture was induced at 37°C for three hours with a final IPTG concentration of 500μM. The cells were then lysed to obtain the protein. The size of the complete protein with 6x-Histag is about 26kDa. We observed two bands in the induced sample between 25 kDa and 32 kDa. The heavier band is the non-truncated protein and the lighter one is its truncated counterpart.

SDS PAGE of fractions from Ni-NTA purification. The top band is the non-truncated protein and the thee bottom band is the protein truncated at the internal start codon (see arrowheads).

Purification using Ni-NTA with BBa_K2609016

The cell lysate thus obatined was purified using Ni-NTA beads which only bind to the proteins with a 6x-His tag, which is absent in the truncated protein. Ideally, the supernatant after binding should have the truncated protein and the elution after purification should have the non-truncated protein. This however is not true because the binding of 6xHis to Ni-NTA is not perfect.

Tht excitation and emission spectra of imCherry after normalizing it with WT BL21 (DE3) lysate.
Note: The negative fluorescence in the graph are due to the normalization procedure.

Fluoroscence

Excitation Spectrum

The excitaion spectrum of the purified sample(elution) was obtained at a fixed emission wavelength of 610 nm. The excitation maxima was obtained at 576 nm.

Emission Spectrum

The emission spectrum of the purified sample(elution) was obtained at a fixed excitation wavelength of 587 nm. The emission maxima was obtained at 607 nm

Quantification of Truncation

The truncation of imCherry was determined by through two different methods:

  • By analaysing the intensity of the truncated and non-truncated protein bands in the SDS PAGE.
  • By combining the fluorescense and gel intensity data of the Ni-NTA purification products(supernatant after binding, wash and elution).This is done assuming that truncated and non-truncated protein has the same fluoresence. The fluorescence of each of the above samples were divided into fluorescnce due to truncated and non-truncated protein based on their coressponding band intensities. The sum of fluorescence values of truncated and non-truncated protein were then used as a measure of their concentration to determine truncation.

Truncation Data



[edit]
Categories
Parameters
None