Part:BBa_K2310100
LuxAB, emitting luciferase (from X. luminescens)
Luminous bacteria are the most abundant and widely distributed of the light-emitting organisms and are found in marine, freshwater, and terrestrial environments. What their most important feature is they can produce the luciferase called LUXAB, which can catalyzes the bioluminescence reactions. Almost all luminous bacteria have been classified into the three genera Vibrio, Photobacterium, and Xenorhabdus.In our progress, the luciferase what we use is from the Xenorhabdus luminescens. LuxAB is a part of luxCDABEG which is the normal structure of the operon in most bioluminescent bacteria. The LuxCDE gene controls the synthesis/regenerate aldehyde and the FMNH2, which is provided by an FMN reductase such as LuxG. The LuxAB luciferase is a heterodimeric enzyme of almost 80kDa composed of α and β-subunits whose molecular weight is 42kDa and 39kDa. For the two subunits, the α subunit plays a major role which is responsible for the light-emitting reaction and the β-subunit is important for stabling the protein, although there is about 40% identity in the amino acid sequence between the α and β subunits.
The 3D-Structure of luxAB luciferase
Usage and Biology
As a luciferase, the light-emitting reaction which catalyzed by the LuxAB involves the oxidation of reduced riboflavin phosphate (FMNH2) and a long chain fatty aldehyde with the emission of blue-green light (490nm). This reaction is as follows:
The reduced flavin, FMNH2, bound to the enzyme, reacts with 02 to form a 4a-peroxyflavin. This complex interacts with aldehyde to form a highly stable intermediate, which decays slowly, resulting in the emission of light along with the oxidation of the substrates.
There are two ways to use the LuxAB as a reporting system, in heterologous hosts such as Escherichia coli. Either luxAB alone can be used (in which case decanal must be provided as substrate), or luxCDABE can be used, (in which case the organism can synthesize aldehyde itself). Because E.coli is capable for reducing the FMN to FMNH, so it is not necessary to add luxG as E. coli for the host.
Luminescent Wavelength
Substrate: Capraldehyde
Emission: 490nm
Protein data analysis
Protein data table for LuxA automatically created by the BioBrick-AutoAnnotator version 1.0 | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nucleotide sequence in RFC 10: (underlined part encodes the protein) ATGAAATTT ... CTATTATATTAG ORF from nucleotide position 1 to 1080 (excluding stop-codon) | ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid sequence: (RFC 25 scars in shown in bold, other sequence features underlined; both given below)
| ||||||||||||||||||||||||||||||||||||||||||||||
Sequence features: (with their position in the amino acid sequence, see the list of supported features)
| ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid composition:
| ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid counting
| Biochemical parameters
| |||||||||||||||||||||||||||||||||||||||||||||
Plot for hydrophobicity, charge, predicted secondary structure, solvent accessability, transmembrane helices and disulfid bridges | ||||||||||||||||||||||||||||||||||||||||||||||
Codon usage
| ||||||||||||||||||||||||||||||||||||||||||||||
The BioBrick-AutoAnnotator was created by TU-Munich 2013 iGEM team. For more information please see the documentation. If you have any questions, comments or suggestions, please leave us a comment. |
Protein data table for LuxB automatically created by the BioBrick-AutoAnnotator version 1.0 | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nucleotide sequence in RFC 10: (underlined part encodes the protein) ATGAAATTT ... GAATATACCTAA ORF from nucleotide position 1 to 981 (excluding stop-codon) | ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid sequence: (RFC 25 scars in shown in bold, other sequence features underlined; both given below)
| ||||||||||||||||||||||||||||||||||||||||||||||
Sequence features: (with their position in the amino acid sequence, see the list of supported features)
| ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid composition:
| ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid counting
| Biochemical parameters
| |||||||||||||||||||||||||||||||||||||||||||||
Plot for hydrophobicity, charge, predicted secondary structure, solvent accessability, transmembrane helices and disulfid bridges | ||||||||||||||||||||||||||||||||||||||||||||||
Codon usage
| ||||||||||||||||||||||||||||||||||||||||||||||
Alignments (obtained from PredictProtein.org) There were no alignments for this protein in the data base. The BLAST search was initialized and should be ready in a few hours. | ||||||||||||||||||||||||||||||||||||||||||||||
Predictions (obtained from PredictProtein.org) | ||||||||||||||||||||||||||||||||||||||||||||||
There were no predictions for this protein in the data base. The prediction was initialized and should be ready in a few hours. | ||||||||||||||||||||||||||||||||||||||||||||||
The BioBrick-AutoAnnotator was created by TU-Munich 2013 iGEM team. For more information please see the documentation. If you have any questions, comments or suggestions, please leave us a comment. |
Characterization
This BioBrick has been characterized. To see more information, you can visit the Experience page
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 530
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 1049
//chassis/prokaryote/ecoli
//classic/reporter
//function/reporter
//function/reporter/light
transcriptional
chassis | E.coli |
color | Blue-green |
emission | 490nm |
excite | Capraldehyde |
function | Reporter |
proteins | LuxA and LuxB |