Coding

Part:BBa_K2298000

Designed by: Xiaowen Mao   Group: iGEM17_SYSU-CHINA   (2017-10-23)
Revision as of 02:01, 27 October 2017 by IncredibleMXW (Talk | contribs)


Human basic fibroblast growth factor (bFGF)

Biology and Usage

Fibroblast growth factors(FGFs), originally known for their capability of promoting fibroblast proliferation, are a family of growth factors that has shown great potentials on tissue repair. Human FGFs consist of 22 members. FGFs exert their roles by binding to the transmembrane tyrosine kinase receptors, FGF receptors(FGFRs), therefore triggering downstream signaling cascades including RAS/MAP Kinase pathway, PI3 Kinase/AKT pathway and PLC-gamma pathway. The signaling then stimulates a wide range of cellular responses, such as cell proliferation, cell migration, cell differentiation and angiogenesis. (see review【1】)


Due to the ability to induce fibroblast proliferation and angiogenesis, FGFs have been studied extensively in terms of tissue repair in diverse kinds of tissue, with basic fibroblast growth factor(bFGF) being the most used FGF in wound healing(see review【1】). bFGF is thought to be an initiator of the wound healing process, reaching its highest concentration soon after injury and then declining to serum level【2】. bFGF may also possess the anti-scarring effect during wound healing【3】, which makes it an potential candidate for scar-free healing applications.


Design Considerations

The nucleotide sequence of bFGF mRNA was retrieved from NCBI nucleotide database, and synthesized by IGE Biological LTD.. Biobrick prefix and suffix was added by PCR using the following primers,

bFGF prefix: 5’ CGGAATTCGCGGCCGCTTCTAGACCATGGCAGCCGGGA 3’

bFGF suffix: 5’ AACTGCAGCGGCCGCTACTAGTAGATCCCGTTGCAACCGC 3’


and ligated onto the pSB1C3 plasmid backbone obtained from digestion of interlab test device 1(BBa_J364000). The ligation was verified by PCR using VF2 and VR as primers, and was further comfirmed by Sanger sequencing by IGE Biological LTD. using VF2 as the forward primer.


Note that this part comes in the absence of the stop codon at the end of the sequence, hence this part should be cloned into vectors with pre-existing stop codon, fused with other protein with stop codon, or added a stop codon using PCR prior to use. Although this sequence start with ACC instead of a canonical start codon ATG, the starting A can still form a complete XbaI site with BioBrick prefix for coding sequence.

2-step PCR When it comes to constructing BioBricks, it is essential to add both BioBrick prefix and suffix However, both prefix and suffix is 22bp in length with high GC content, resulting in primers over 40bp in length, accompanied by extremely high Tm value. PCR reactions with such primers are likely to yield no intended products. Last year, the team SYSU-CHINA proposed to use shorter primers with only XbaI and SpeI restriction sites to solve this problem. However, XbaI and SpeI have compatible sticky ends which may result in uncontrolable orientation of the insertion as well as vector self-ligation (unless treated with alkaline phosphatase).

This year, we propose an alternative PCR protocol called 2-step PCR (there are only 2 steps each cycle) to solve this problem. This method is adapted from Takara PrimerSTAR Max DNA Polymerase product manual with slight alternation. The set-up is shown below:

For the reaction mixture:

 DNA template: 200-300ng/50ul
 Forward primer: 20pmol
 Reverse primer: 20pmol
 PrimeSTAR Max Premix(2×): 25ul 
 DdH2O: up to 50ul


For the reaction condition set-up:

 Pre-denaturalization   
   98 degree celcius for 3minutes
 Amplification cycles
   95 degree celcius for 30 seconds
   68 degree celcius for 60 seconds
   Repeat for 30 cycles
 Final elongation
   72 degree celcius for 3 minutes


Using this method, we successfully added prefix and suffix to the VEGF-A121 gene and ligate the product to pSB1C3 backbone with ease.


Note that this method may yield unspecific amplification, thus agarose gel electrophoresis and gel extraction should be performed to obtain amplification products of right size. Moreover, additional experiments are required to determine the optimal parameters for this PCR reaction.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 409
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 347
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 165


[edit]
Categories
Parameters
None