Part:BBa_K2273114
Beta-lactamase encoding gene penP found in B. subtilis
This gene is a part used in the Beta-Lactam Biosensor project of [http://2017.igem.org/Team:TU_Dresden iGEM Team TU Dresden 2017 (EncaBcillus - It's a trap!)]. It codes for a beta-lactamase found in Bacillus subtilis. Yet there is not much known about the activity and activation of the beta-lactamase PenP in B. subtilis. The highest expression levels seem to be achieved when high salt concentrations occur. [http://www.subtiwiki.uni-goettingen.de/v3/gene/view/713BAB7190E1F86C55103049B29072F00E0DFFB3] PenP belongs to the class of Hydrolases and is able to break down beta-lactam antibiotics. This enzyme also harbours a n-terminal signal peptide sequence and is most likely secreted and therefore localized outside of the cell. [http://www.uniprot.org/uniprot/P39824] To investigate the influence that the presence of the beta-lactamase PenP in B.subtilis has on the sensitivity our biosensor, we analyzed the promoter activity of PpenP under antibiotic stress conditions. We amplified a short and a longer version of this promoter to potentially take into account all regulatory regions upstream of the penP gene.
This part features the RFC25 prefix and suffix to enable translational fusions:
Prefix with | EcoRI, NotI, XbaI, RBS, spacer sequence, Start Codon and NgoMIV | GAATTCGCGGCCGCTTCTAGAAGGAGGTGTCAAAATGGCCGGC |
Suffix with | AgeI, Stop Codon, SpeI, NotI and PstI | ACCGGTTAAACTAGTAGCGGCCGCTGCAGA |
Sites of restriction enzymes generating compatible overhangs are indicated by sharing one color. (EcoRI and PstI are marked in blue, NotI in green, XbaI and SpeI in red, AgeI and NgoMIV in orange)
Beta-Lactam Biosensor
In this subproject, we developed a functional and complete heterologous beta-lactam biosensor in Bacillus subtilis. By the time these specified cells sense a compound of the beta-lactam family, they will respond by producing a measurable luminescence signal. We further investigated the detection spectrum of the biosensor by testing different beta-lactam antibiotics from various subclasses. For increased control and easy handling of the biosensor strain during a potential field application, we demonstrate that the encapsulation of the cells into Peptidosomes is quite advantageous.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
None |