RNA

Part:BBa_K1997006

Designed by: Chushu Zhu   Group: iGEM16_NUDT_CHINA   (2016-10-13)
Revision as of 04:33, 20 October 2016 by Zhuchushu13 (Talk | contribs)


let-7a

Let7a is one of the founding members of the let7 family.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Experimental Validation

This part is validated through four ways: enzyme cutting, PCR, Sequence, and functional testing

Sequencing

This part is sequenced as correct after construction.

PCR

Methods

The PCR is performed with Premix EX Taq by Takara.

F-Prime: 5’- GAATTCGCGGCCGCTTCTAGAATGC-3’

R-Prime: 5’- GGACTAGTATTATTGTTTGTCTGCC-3’

The PCR protocol is selected based on the Users Manuel. The Electrophoresis was performed on a 1% Agarose glu. The result of the agarose electrophoresis was shown on the picture below.

NUDT-006-1.jpg

Enzyme digestion test

Methods

After the assembly ,the plasmid was transferred into the Competent E. coli DH5α). After culturing overnight in LB,we minipreped the plasmid for cutting. The preparation of the plasmid was performed with TIANprep Mini Plasmid Kit from TIANGEN. The cutting procedure was performed with EcoRI and SpeI restriction endonuclease bought from TAKARA.

The plasmid was cutted in a 20μL system at 37 ℃ for 2 hours. The Electrophoresis was performed on a 1% Agarose glu.

The result of the agarose electrophoresis was shown on the picture above.

Functional Test

In vitro transcription experiment of let-7a was performed.The Electrophoresis was performed on a 2% Agarose glu.

The result of the agarose electrophoresis was shown on the picture below.

T--NUDT CHINA--let7a.jpg

References

[1] Day, R. N. & Davidson, M. W.The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38, 2887-2921, doi:10.1039/b901966a (2009).

[2] Pfleger, K. D.& Eidne, K. A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nature methods 3,165-174, doi:10.1038/nmeth841 (2006).

[3] Kodama, Y. &Hu, C. D. An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio.Biotechniques 49, 793-805, doi:10.2144/000113519(2010).

[4] Cabantous, S. et al. A new protein-protein interaction sensor based on tripartite split-GFP association. Scientific reports 3, 2854, doi:10.1038/srep02854 (2013).


[edit]
Categories
Parameters
None