Composite

Part:BBa_K1974023

Designed by: YU-CHUN WU   Group: iGEM16_NCTU_Formosa   (2016-10-13)
Revision as of 16:03, 18 October 2016 by TSUNG CHI CHEN (Talk | contribs)


T7Promoter+RBS+OAIP+linker+snowdrop-lectin+linker+6X His-Tag

Introduction:

Figure 1.T7promoter+RBS+OAIP+linker+snowdrop-lectin+linker+6xhistag

       By ligating the IPTG induced promoter T7 (BBa_ I712074), strong ribosome binding site (BBa_B0034), OAIP, linker, and the 6xHistag (BBa_ K1223006), we can express OAIP, the toxin by IPTG induction
       This year we create a revolutionary system that integrates biological pesticides, automatic detector, sprinkler, and IoT. We made a database that contains most of the spider toxins and selected the target toxins by programming. Orally Active Insecticidal Peptide is coded for the venom of a spider, Hadronyche versuta.

       It is under the control of the strong T7 promoter. Snowdrop-lectin acts as a carrier that could transport the toxin to insect’s nervous system, hemolymph and can improve the oral activity. A 6xHistag is added for further protein purification.



Mechanism of OAIP:

       According to reference, snowdrop-lectin is resistant to high temperature and would not be degraded by digestive juice. The species-specificity is based on the toxin, and the snowdrop lectin is the role of the carrier.

       According to reference, Orally Active Insecticidal Peptide has a structure called ICK(inhibitor cysteine knot).[1] This kind of structure contains three disulfide bonds and beta-sheet. With this structure, OAIP can resist the high temperature, acid-base solution and the digest juice of insect gut. OAIP can bind on insect voltage-gated Calcium channels (CaV1) in the central nervous system, making it paralyze and die eventually.


Features of Hv1:

1. Non-toxic: Orally Active Insecticidal Peptide is non-toxic to mammals and Hymenoptera (bees). Since the structure of the target ion channel is different, Orally Active Insecticidal Peptide does not harm mammals and bees. So it is safe to use it as a biological pesticide.


2. Biodegradable: Orally Active Insecticidal Peptide is a polypeptide so it must degrade over time. After degradation, the toxin will become nutrition in the soil.


3. Species-specific: According to reference, Orally Active Insecticidal Peptide has specificity to Lepidopteran (moths), Dipteran (flies) and Orthopteran (grasshoppers).


4. Eco-friendly: Compare with chemical pesticides, Omega-hexatoxin-Hv1a will not remain in soil and water so that it will not pollute the environment and won’t harm the ecosystem.

       Together, using OAIP is totally an environmentally friendly way for solving harmful insect problems by using this ion channel inhibitor as a biological pesticide.


Target insect:

Figure 2.


Experiment

1. Cloning :
       After assembling the DNA sequences from the basic parts, we recombined each T7 Promoter+B0034+toxin +linker+6xHistag gene to pSB1C3 backbones and conducted a PCR experiment to check the size of each part. The DNA sequence length of these parts is around 250-500 bp. In this PCR experiment, the toxin product's size should be near at 450-700 bp. Proved that we successfully ligated the toxin sequence onto an ideal backbone.

Figure 3.

2. Expressing:
       E.coli(DE3) express the protein and form the disulfide in the cytoplasm. We sonicated the bacteria and purified the protein by 6xHis-tag behind the toxin using Nickel resin column.

3. Analysis:
       We do the Bradford analysis to get the protein concentration.

Figure 4.
Also, we do the UV test and model the degradation rate.

Figure 4.
Figure 5.

4.Modeling:
       According to reference, the energy of Ultraviolet will break the disulfide bonds and the toxicity is also decreased. To take the parameter into consideration for our automatic system, we modeled the degradation rate of the protein and modify the program in our device.


5. Device:
       We designed a device that contains detector, sprinkler, and integrated hardware with users by APP through IoT talk. We use infrared detector to detect the number of the pest and predict what time to spray the farmland. Furthermore, other detectors like temperature, humidity, lamination, pressure of carbon dioxide and on also install in our device. At the same time, the APP would contact the users that all the information about the farmland and spray biological pesticides automatically. This device can make farmers control the farmland remotely.





[edit]
Categories
//awards/part_collection/2016
Parameters
None