Part:BBa_K1927000:Design
Beta-lacatamase enzyme called blaNDM-1
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 716
Design Notes
This is a class B β - lactamase. It belongs to a rather big group of extended spectrum β - lactamases (ESBL). Bacteria that produces these enzymes are resistant to several types of antibiotics. Classification of ESBL is done in many ways and is rather complicated. Different nomenclatures have been proposed and depated for beta lactamases which includes several hundreds of enzymes.(http://www.lahey.org/studies/webt.asp) Carbapenemase is a versatile group of β-lacatamases, they have the abitily to hydrolyze penicillins, cephalosporins, monobactams and cabapenems. For this reason these bacteria can cause serious infections in humans. Carbapenemases are further divided into molecular classes A, B and C.
This particular gene belongs to class B which represent metallo-β-lacatamases that contain zink in the active site. The mechanism of beta lactamases are oriented to the bacterial cell wall. This cell wall is unique to bacteria and consist of several components. Gram Positive and gram negative bacteria will have a different cell wall composition. In general, Gram-positive bacteria have a thicker layer of cell wall as well as a layer of cytoplasmic membrane. These layers consist of several conserved compounds such as monomeric disaccharide tetrapeptide, which are usually also those that will trigger an immunological defence respons of the host. Gram-negative bacteria (e.g., Escherichia coli) typically contain an outer membrane, an intervening periplasmic space where a thin layer of cell wall resides, and a layer of cytoplasmic membrane. β-lacatamases are usually produced both by gram negative and positive bacteria, either from plasmid or chromosomally. Beta lactamases are able to resist several types of antibiotics. These antibiotics all have in common a 4 - atom ring called beta lactam ring which the enzyme are able to hydrolyze and break open and the molecule looses its antibacterial function. Penicillin, a regulary used antibiotic have such a beta lactam ring. This drug was the first antibiotic to be discovered and is still widely used today. This ring will bind to an enzyme (DD –transpeptidase) that is in charge of renewing the bacterial cell wall. Without this enzyme there will be no new formations of peptidoglycans for the cell wall and the integrity of the bacterial cell wall will be lost, it will eventually rupture and the bacteria will die. By hydrolyzing the ring, it will make the molecule unable to bind to the cell wall producing enzyme, thus the Penicillin have lost its destructive activity.We designed this biobrick without any promotor so the part would be less dangerous to deal with.
Source
This part is originally from a clinical isolate of a ESBL E. Coli strain collected from a antibiotic resistance expertize center in Tromsø, Norway. The sequence has been sendt to IDT and synthesized.
References
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932750/ http://www.sciencedirect.com/science/article/pii/S1319562X14000941#b0405