Coding

Part:BBa_K1739003

Designed by: Natalie Sloan   Group: iGEM15_Kent   (2015-09-15)
Revision as of 13:39, 16 September 2015 by NSloan (Talk | contribs)

Sequence coding for Envirowire: Sup35NM with N-terminal CsgAss and C-terminal cytb562

This BioBrick contains the constitutive promoter BBa_J23104 and uses the pSB1C3 backbone. It consists of three genes, a csgA signal sequence, Sup35-NM, and cytochrome b562. The bipartite csgA signal sequence targets the Sec protein export pathway followed by the endogenous curli export system of E.coli allowing our protein to be easily exported into an external medium (Sivanathan and Hochschild, 2012; Sivanathan and Hochschild, 2013)./what is the sequence/more info. Sup35-NM is derived from the yeast prion protein Sup35p and excludes the C-terminal domain. The N-terminal domain allows self-assembly of functional amyloid (Frederick et al., 2014; Glover et al. 1997). This has previously been discussed by Tessier and Lindquist (2009) who show that two beta-sheets bond together in a self-complimenting ‘steric zipper’ that excludes water, leaving a highly stable parallel beta-sheet with one molecule every 4.7Å. The particular advantage of using Sup35-NM is that in its native state Sup35p has two functional domains, the N and C terminal, separated by the highly charged M domain (Frederick et al., 2014; Glover et al. 1997; Wickner et al., 2007). Thus facilitating the removal of one functional domain in order to add our own functional protein, in this case cytochrome b562 to form a fusion protein. (the part about the domains is almost the same as the description for the first part. We should reword it maybe)

We chose Cytochrome b562 as the electron carrier to make our amyloid conductive. The structure of cytochrome b562 consists of a single 24kDa subunit containing four nearly parallel alpha helices (Fujiwara, Fnkumori, and Yamanaka, 1993; Mathews et al., 1979). B-type cytochromes are a favourable choice because haem binds in a non-ionic fashion (consider rephrasing. covalently? Van der Waals? wat ) to the two ligands Methionine-7 and Histidine-106 (Xavier et al., 1978). Haem binding has been shown to occur in both the native protein and the denatured protein, although the latter exhibits a modest affinity with a dissociation constant (Kd) of 3μM. This allows the cytochrome to be exported in an unfolded state and haem to be added exogenously to initiate correct folding of the cytochrome by burying hydrophobic side chains (Robinson et al., 1997). molecular weight. Furthermore, haem binding to cytochrome b562 has a high affinity interaction with a dissociation constant (Kd) of 9nM at 25°C (Robinson et al., 1997). This BioBrick has been optimised for use in the VS45 strain of E.coli containing deletions that prevent amyloid from binding to the outside of the cell and increase the rate of protein exiting the cell via the curli export system.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 7
    Illegal NheI site found at 30
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 718


References

Frederick, K., Debelouchina, G., Kayatekin, C., Dorminy, T., Jacavone, A., Griffin, R. and Lindquist, S. (2014). Distinct Prion Strains Are Defined by Amyloid Core Structure and Chaperone Binding Site Dynamics. Chemistry & Biology, 21(2), pp.295-305.

Fujiwara, T., Fnkumori,, Y. and Yamanaka, T. (1993). Halobacterium halobium Cytochrome b-558 and Cytochrome b-562: Purification and Some Properties. J. Biochem., 113, pp.48-54.

Glover, J., Kowal, A., Schirmer, E., Patino, M., Liu, J. and Lindquist, S. (1997). Self-Seeded Fibers Formed by Sup35, the Protein Determinant of [PSI+], a Heritable Prion-like Factor of S. cerevisiae. Cell, 89(5), pp.811-819.

Mathews, F. S., Bethge, P. H., & Czerwinski, E. W. (1979). The structure of cytochrome b562 from Escherichia coli at 2.5 A resolution. Journal of Biological Chemistry, 254(5), 1699-1706.

Robinson, C., Liu, Y., Thomson, J., Sturtevant, J. and Sligar, S. (1997). Energetics of Heme Binding to Native and Denatured States of Cytochrome b 562 †. Biochemistry, 36(51), pp.16141-16146.

Sivanathan, V. and Hochschild, A. (2012). Generating extracellular amyloid aggregates using E. coli cells. Genes & Development, 26(23), pp.2659-2667.

Sivanathan, V. and Hochschild, A. (2013). A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc, 8(7), pp.1381-1390.

Tessier, P. and Lindquist, S. (2009). Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol, 16(6), pp.598-605.

Wickner, R., Edskes, H., Shewmaker, F. and Nakayashiki, T. (2007). Prions of fungi: inherited structures and biological roles. Nature Reviews Microbiology, 5(8), pp.611-618.

Xavier, A., Czerwinski, E., Bethge, P. and Mathews, F. (1978). Identification of the haem ligands of cytochrome b562 by X-ray and NMR methods. Nature, 275(5677), pp.245-247.

[edit]
Categories
Parameters
None