Part:BBa_K1390012
MMOZ-His Generator
This is the His-tagged version of mmoB from Methylococcus capsulatus under control of Lac-promotor R0011 with RBS B0032 and the terminator B0032
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Biology and Usage
MMOZ encodes the γ subunit of the hydroxylase component of the sMMO [1].
Design and coexpression
We put BBa_K1390012 under the control of the inducible lacl promoter (R0011) which has a low leakiness and is easily inducible with IPTG. This strong, frequently used promotor is well characterised in the iGEM registry and is reported to be well functioning. We also added the extensively documented weak ribosome binding site (B0032) with a strength of 33.96% compared to B0034 to diminish the formation of inclusion bodies and a double terminator (B0015). For expression we decided to use pSB1A3 because of its ampicillin resistance (in contrast to the chaperone plasmid which carries a chloramphenicol resistance cassette). To ensure proper folding of the BBa_K1390012 in E. coli JM109 we coexpressed it with chaperones (groES, groEL). The TaKaRa Clontech Chaperone Plasmid Set proved to be appropriate for this as it contains a chaperone plasmid encoding groES and groEL (chaperone plasmid 2 according to the manufacturer) which can be coexpressed with BBa_K1390012 [2]. Synthesis of the protein can be induced as soon as the chaperones are operational.
Expression Analysis
To detect whether the subunit is synthesized in soluble form or in inclusion bodies it was provided with a 6xHis-tag, as shown for BBa_K1390012. We analyzed the expression by Western Blot. We separated the soluble fraction and the inclusion body fraction of the subpart after coexpression with chaperone plasmid 2. The subpart could be expressed in the soluble fraction with the aid of GroES and GroEL encoded on the plasmid (Figure 1).
Summary
BBa_K1390012 is synthesizable in the soluble fraction by use of several chaperones. We recommend the use of GroEL/ Gro ES provided by Takara (Takara Bio Inc., Japan)
Reference
[1] Wang W, Iacob RE, Luoh RP, Engen JR, Lippard SJ (2014) Electron Transfer Control in Soluble Methane Monooxygenase. J Am Chem Soc 136:9754-62
[2] Chaperone Plasmid Set Product Manual, TaKaRa Bio Inc. 2014
None |