Part:BBa_K1172901
Alanine racemase from ''E. coli''
The alanine-racemase alr (EC 5.1.1.1) from the gram-negative enteric bacteria Escherichia coli is a racemase, which catalyses the reversible reaction from L-alanine into the enantiomer D-alanine. For this reaction the cofactor pyridoxal-5'-phosphate (PLP) is typically needed. The constitutive alanine-racemase (alr) is naturally responsible for the accumulation of D-Alanin, which is an essential component of the bacterial cell wall, because it is used for the crosslinkage of the peptidoglykan ([http://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_System_S#References Walsh, 1989]).
The use of D-Alanine instead of a typically L-amino acids prevents the cleavage by peptdidases, but a lack of D-Alanine leeds to a bacteriostatic characteristic. So in the absence of D‑Alanine dividing cells will lyse rapidly. This approach is used by our Biosafety-Strain, a D-alanine auxotrophic mutant (K-12 ∆alr ∆dadX). The Safety-Strain grows only with a plasmid containing the Alanine-Racemase (BBa_K1172901) for the complementation of the D-alanine auxotrophic. Because the Alanine-Racemase is therefore essential for bacterial cell division, this approach guarantees a high plasmid stability, which is extremely important when the plasmid contains a toxic gene like the Barnase. In addition this construction provides the possibility of a double kill-switch system. Because if the expression of the Alanine-Racemase is repressed and there is no D-Alanine-Supplementation in the media, the cells would not increase.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 331
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 255
Illegal BamHI site found at 957 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 373
Illegal AgeI site found at 673 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 130
The deletion of the Alanin-Racemases and araC in E. coli was not possible in the common used strains like JM109, Top10 or KRX, but in the wild type strain K-12. This is may due to the RecA1-mutations in this strains, which guarantees a better plasmid maintenance because of defect rekombinase.
To avoid a second recombination of the Alanine-Racemase (alr) from the plasmid with the genome, the whole coding sequence was deleted in the genome and the characterization of the Alanine-Racemase was performed with the antibiotic chlormaphenicol. For the complementation the Alanine-Racemase (alr) was brought under the control of the ptac promoter. The ptac promoter is a fusion promoter of the -35-region of the trp promoter and the -10-region the lac promoter, so that there only slight repression and the expression of the Alanine-Racemase is highly activated ([http://2013.igem.org/Team:Bielefeld-Germany/Biosafety/Biosafety_Strain#References De Boer et al., 1983]). Therefore an induction with IPTG was not necessary on M9, but surprisingly it was essential on LB-agar.
The deletion of the constitutive Alanine-Racemase (alr) and the catabolic Alanine-Racemase (dadX) in E. coli leads to a strict dependance on the amino acid D-alanine, as aspected. As shown in the figure below the bacteria with this deletions are not any more able to grow on normal M9-media without D-alanine supplementation (purple curve), whereas the wild type does (red curve). The auxotrophic Safety-Strain grows only on media with D-alanine (5 mM) supplemented (blue curve) or by a complementation of the Alanine-Racemase via plasmid. Further it can be seen, that the auxotrophic mutant K-12 ∆alr ∆dadX grows slightly slower, than the wild type K-12. In contrast the bacteria containing the Alanine-Racemase (alr) on the plasmid BBa_K1172902 does hardly show a disadvantage in the cell division compared to the wild type.
None |