Generator

Part:BBa_K801073

Designed by: Dennis Hell   Group: iGEM12_TU_Munich   (2012-09-21)
Revision as of 08:44, 24 October 2012 by Dennis48 (Talk | contribs)

CaXMT1 expression cassette for yeast

Yeast expression cassette for CaXMT1 (BBa_K801070) controlled by the yeast TEF2 promoter (BBa_K801010) and the yeast ADH1 terminator (BBa_K801012).

This BioBrick is the generator for the enzyme xanthosine N-methyltransferase 1 (CaXMT1) and part of the caffeine synthesis pathway. For creating an expression cassette with all three enzymes of the caffeine synthesis pathway BBa_K801077 based on the substrate Xanthosine different promoters and terminators were assembled to each enzyme. CaXMT1 is regulated by the constitutive promoter Tef2, which is a strong yeast promoter. The used terminator Adh1, is a widely used yeast terminator. The Tef2 promoter was prefered compared to the Tef1 promoter (which is even stronger) in order to limit metabolic stress, which could result in a positive selection of natural mutants (with regard to genome integration).

Background and principles

Structure of Caffeine.

Caffeine is a purine-alkaloid and its biosynthesis occurs in coffee plants and tea plants. Its chemical structure is similar to that of the ribonucleoside adenosine. Hence it can block specific receptors in the hypothalamus. Adenosine binding leads to decreased neurotransmitter-release and therefore decreased neuron activity. This induces sleep and thus avoids overexertion of the brain. Since caffeine antagonizes adenosine and increases neuronal activity, it is used as a means to stay awake. On average, one cup (150 ml) of coffee contains about 50 - 130 mg caffeine and one cup of tea 25 - 90 mg. At higher doses (1g), however, caffeine leads to higher pulse rates and hyperactivity. Moreover, caffeine was shown to decrease the growth of E. Coli and yeast reversibly as of a concentration of 0.1 % by acting as a mutagen (Putrament et al., On the Specificity of Caffeine Effects, MGG, 1972), but previous caffeine synthesis experiments (see below) have only led to a concentration of about 5 µg/g (per g fresh weight of tobacco leaves), so it is not expected to reach critical concentrations and the amounts of caffeine in coffee or tea (leading to physiological effects) is usually a little bit lower.

Usage and Biology

The enzyme CaXMT1 (xanthosine N-methyltransferase 1 of coffea arabica) catalyses the first reaction step of the caffeine biosynthesis pathway and convertes the sustrate Xanthosine into 7-Methylxanthosine. It uses SAM als methyl-donor and is located in the cytoplasm of the plants. Furthermore it exists as homodimer, being also able to form heterodimers with the other enzymes of the caffeine pathway (see [http://www.brenda-enzymes.info Brenda]).

Modifications

  • the 5' UTR and 3' UTR of the original sequences were removed
  • the yeast consensus sequence for improved ribosome binding (TACACA) was added 5' of the start codon ATG
  • according to N- end rule and the yeast consensus sequence for improved ribosome binding, the first triplet after ATG (GAG) was exchanged with TCT (serine), to optimize both, protein stability and mRNA translation. This decision was made after proofing the 3D- structure of the enzyme CaDXMT1. Due to the fact, that the first two residues of the amino acid sequence are not shown in the crystalized structure (probably because of high flexibility), we chose to exchange this amino acid, because it is probably not necessary for the uptake of the ligands ([http://www.uniprot.org/uniprot/Q9AVK0 uniprot] entry further shows, that it is not immediately involved in ligand binding). Because of the high similarity of the enzyme sequences, we also exchanged this amino acid.
  • we added a c- terminal strep-tag for purification and detection
  • the remaining coding sequence was extended with the standard RFC10 prefix and suffix, respectively
  • at last we made an optimization of the coding sequences with respect to the codon usage and mRNA structures
  • remove of all critical restriction sites (RFC10 and RFC25)

Note: Because of the yeast consensus sequence, this coding part does not start with ATG!

Cloning into pSB1C3

The cloning into pSB1C3 was proved by performing an analytical digest with XbaI and PstI.

TUM12 analyticaldigestCaXMT1cassette.jpg

To check the successful cloning, we performed an analytical digest with XbaI and PstI.

The expected lengths of the fragments were:

  • Insert (CaXMT1): ca. 2400bp
  • Backbone (pSB1C3): ca. 2050 bp

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 138
  • 1000
    COMPATIBLE WITH RFC[1000]


References


[edit]
Categories
//cds
//cds/biosynthesis
//chassis/eukaryote/yeast
Parameters
None