Part:BBa_K782061
VEGF-p2a-PDGF
Introduction
Experimental data show the important regenerating role of vascular endothelial growth factor (VEGF) after acute myocardial infarction (Banfi et al., 2012; Zhang et al., 2008). After binding to its receptor VEGFR1 and VEGFR2 it supports angiogenesis, inhibits endothelial cell apoptosis, promotes endothelial cell proliferation, and restores heart function. Although therapeutic angiogenesis by delivery of vascular growth factors is an attractive strategy, many clinical trials have thus far failed to show efficacy. One of the most likely explanations for this discrepancy is that VEGF induces growth of dysfunctional vessels, if expressed outside of a narrow dosage window (Banfi et al., 2012). Banfi et al. confirmed the hypothesis that co-delivery of platelet-derived growth factor-BB (PDGF-BB), which recruits pericytes, induced normal angiogenesis in skeletal muscle irrespective of VEGF levels. It was also shown that coexpression of VEGF and PDGF-BB encoded by separate vectors in different cells or in the same cells only partially corrected aberrant angiogenesis. In marked contrast, coexpression of both factors in every cell at a fixed relative level via a single bicistronic vector led to robust, uniformly normal angiogenesis, even when VEGF expression was high and heterogeneous. We therefore prepared and deposited a fusion of VEGF and PDGF-BB, joined through a p2a sequence in frame between the two coding protein coding sequences (figure 1). This allows concurrent stoichiometric production of these proteins (Szymczak et al., 2004).
Figure 1. Shematic representation of VEGF and PDGF linked with p2A.
- VEGF and PDGF-BB were obtained from Sino Biological Inc.
Refrences
Banfi, A., von Degenfeld, G., Gianni-Barrera, R., Reginato, S., Merchant, M.J., McDonald, D.M., and Blau, H.M. (2012) Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. FASEB J. 26, 2486-2497.
Szymczak, A.L., Workman, C.J., Wang, Y., Vignali, K.M., Dilioglou, S., Vanin, E.F., Vignali D.A. (2004) Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589-94
Zhang, H., Zhu, S.J., Wang, W., Wei, Y.J., and Hu, S.S. (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther. 15, 40-48.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 833
Illegal BamHI site found at 457 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 789
Illegal NgoMIV site found at 1166 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 163
Illegal BsaI.rc site found at 668
Illegal BsaI.rc site found at 1228
Illegal SapI site found at 537
None |