Part:BBa_K535003:Design
FeOx -> Clostridium acetobutylicums ferredoxin
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 102
Design Notes
Some codons of the original Clostridium acetobutylicum FeOx sequence have been changed for synonimous ones according to the Codon Adaptation Index (CAI) procedure with respect to Rhizobium etli CFN42 codon usage in order to optimize its expression and to optimize R. etli CFN42’s (where we will express this gene) fitness as well.
The Codon adaptation Index indicates how similar the Codon Usage (CU) in a coding sequence (CDS) is to that of highly/constitutively expressed genes. It is not a cause of high gene expression, but it is necessary to optimize resource usage. To optimize a sequence according to the CAI procedure we first obtained relative adaptiveness (w) for each codon (1.- most frequent codon. 0.- non-existent codon) in R. etli and then we substitute codons in target CDS for all synonymous codons with greatest w.
In our final construction (part ####) we coupled this sequence with the N-terminus hydA gene (part ####) using a flexible glycine/serine-rich linker of 14 aminoacid long in order to make the electron transfer more efficient. At the end we added a poly-His region so we can make an immuno-assay to verify that the whole construction is being exported to the periplasm, this tag is flanked by two AatII restriction sites so we can split it out if needed. We also added a double TAA terminator. The whole construction is regulated by the NifH promoter region (part ###) so it will be transcribed under microaerobic conditions.
This part was synthesized.
Source
This sequence was copied from the ferredoxin gene encoded in C. acetobutylicum’s genome.
References
- Christina M Agapakis, Daniel C Ducat, Patrick M Boyle, Edwin H Wintermute, Jeffrey C Way, Pamela A Silver (2010) Insulation of a synthetic hydrogen metabolism circuit in bacteria. Journal of Biological Engineering 4:3.