Part:BBa_K5267043
P_1xNFAT->IgK->Nluc->bGH_polyA
Transpose and respond to calcium ion signals Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 190
- 1000COMPATIBLE WITH RFC[1000]
Profile
Name: P_1*NFAT->IgK->Nluc->bGH_polyA
Base Pairs: 896bp
Origin: Homo sapiens
Properties: The transformation of calcium ion concentration is reported by fluorescence
Usage and Biology
At present, some people have successfully designed a series of repetitive pseudo-palindromic NFAT reaction element guided by nano-luciferase reporter gene system[1].
In order to evaluate the biological implications of heightened intracellular calcium ion (Ca2+) levels, we have engineered a suite of Ca2+-responsive NanoLuc-reporting constructs predicated on the Ca2+-dependent engagement of nuclear factors of activated T cells (NFAT) dimers (Figure 1).
To substantiate the functionality of the aforementioned constructs, human embryonic kidney 293 cells (HEK293) were co-transfected with expression vectors harboring the newly engineered NanoLuc-reporter genes. At the cellular level, melatonin can affect the activity of calcium channels through its receptors, leading to changes in intracellular calcium concentration. The reporting system is designed to be responsive to oscillations in intracellular Ca2+ concentrations. The optimal configuration of the reporting pathway was ascertained by evaluating and comparing the relative luminescence unit (RLU) expression profiles of the NanoLuc reporter genes, thereby discerning the most efficacious design among the various constructs.
We introduced the expression vectors encoding the novel NanoLuc-reporter constructs into HEK293T cells via co-transfection, followed by the application of thapsigargin to elicit an intracellular calcium ion (Ca2+) response. The experimental paradigm encompassed three replicate experiments alongside a non-transfected control group (BBa_K5267049). Subsequent to a 48-hour exposure to thapsigargin, the luminescence intensity of the reporter element NanoLuc (measured as relative light units, RLU) was quantified across all experimental cohorts to assess the transcriptional activity induced by the treatment.
We developed a series of Ca2-induced NanoLuc reporting systems based on Ca2+ dependent activation of dimer NFAT to monitor the effects of increased Ca2+ concentration in downstream pathways following melatonin receptor response on cells. (figure. 1)
The system is divided into two parts: the signal response element (encoded by Part:BBa K5267007) and the detection report element (encoded by Part:BBa_K2728003).
HEK293 cells were co-transfected with a newly designed NanoLuc reporter expression plasmid to construct a NFAT response element (RE) -directed Nanoluc reporting system. With the NanoLuc reporter gene, we can detect the activation of the NFAT signaling pathway.[2]
Figure 1. Construction of a pseudo-palindromic NFAT-response element (RE)-directed Nanoluc reporter system.
Special design
Given the subdued transcriptional impact of an isolated response element, it is a common practice to introduce multiple tandem iterations of said element into the genomic locus proximal to the reporter gene, thereby amplifying the efficacy of the signaling cascade initiation.[1]
The aforementioned reporter constructs incorporate a variable number of tandem repeats (1x, 5x, 6x, and 7x) derived from the NFAT response element (NFAT-RE) within the interleukin-4 (IL4) promoter sequence (5'-TACATTGGAAATTTTTAT-3'). This particular sequence is anticipated to facilitate the transcriptional activation of the NanoLuc reporter genes (Figure 2).
Figure 2. Schematic diagram of MT1 receptor activating the downstream NFAT pathway.
Consequently, this system offers a valuable tool for elucidating the dynamic changes within the signaling network following the activation of melatonin receptors.
Function test
Method
Results
None