Part:BBa_K174008
SmtA metallothionein protein with CotC and Gfp fusion
SmtA metallothionein protein from E. coli can bind to heavy metals [1,2,3]. They have a tendency to bind to cationic metal ions such as cadmium, copper, arsenic, mercury, silver. By fusing CotC spore coat protein from Bacillus subtilis, it can be localized to the spore coat, hence trap the metals into bacterial spores. It is also fused with Gfp to see the spores using a microscope.
We designed this device to sequester cadmium into bacterial spores. It is controlled with sigK promoter which becomes active when sporulation conditions become active. Hence metals are soaked up when the cells are ready for sporulation. We intended to knock out germination genes and locate SmtA proteins to the spores making the cadmium bio-unavailable.
For more information, go to Newcastle iGEM 2009 [http://2009.igem.org/Team:Newcastle/Metals Metal Sequester] and [http://2009.igem.org/Team:Newcastle/Project/Overview Overview] pages.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 1234
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1046
References
- Cretì, P., F. Trinchella, et al. "Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems." Environmental Monitoring and Assessment.
- Morby, A. P., J. S. Turner, et al. (1993). SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. 21: 921-925.
- Waldron, K. J. and N. J. Robinson (2009). "How do bacterial cells ensure that metalloproteins get the correct metal?" Nat Rev Micro 7(1): 25-35.
None |