Part:BBa_K4182003
Native Pc-eSD-VVD-AraC
To realize the controllable synthesis and release of products, we developed the blue-light inducible system by replacing the arabinose binding and dimerization domain of arabinose operon with blue-light responsive VVD domain, generating VVD-AraC fusion protein, which will dimerization under light and promote the downstream PBAD promoter.We selected sfGFP as the reporter to verify the regulation of the system. In order to test the effect of VVD-AraC expression level on the downstream gene expression, three promoters-native Pc, J23101 and porin promoter was selected in our study (BBa_K4182001, BBa_K4182002, BBa_K4182003).
Native Pc promoter is a constitutive promoter of AraC protein in the arabinose operon of E.coli.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 627
- 12INCOMPATIBLE WITH RFC[12]Illegal PstI site found at 627
- 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 627
- 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 627
- 1000COMPATIBLE WITH RFC[1000]
Profile
Base Pairs
894
Design Notes
The codon of E. coli was optimized
Source
E.coli&Neurosparo ceassa
Usage&Test
Based on the above information, we designed the upstream regulator- the chimeric VVD-AraC fusion protein by replacing the arabinose binding and dimerization domain of arabinose operon with a blue-light responsive VVD domain, which will dimerization under light and promote the downstream PBAD promoter. We selected sfGFP as the reporter to verify the regulation of the system. In order to test the effect of VVD-AraC expression level on the downstream gene expression, three promoters-native Pc, J23101 and porin promoter was selected in our study (BBa_K4182001, BBa_K4182002, BBa_K4182003). Although the Pc promoter is not the best, we still want to share our results.
FIG. 1 The blue light induced circuit
The VVD gene from Streptomyces were chemically synthesized, and the AraC-ParaBAD promoter in arabinose operon was amplified from Escherichia coli, and eSD from E. coli was served as the ribosome binding site. The three promoters-native Pc, J23101, and porin was obtained by PCR. All the fragments were ligated into pBBRMCS1 vector in one step via Golden Gate Assembly.The recombinant plasmids were verified by colony PCR as shown in Figure 3. As a result, three plasmids PVVDH-Pc, PVVDH-J23101, PVVDH-porin, were successfully constructed for further test including cell growth and the expression of GFP.
To test expression of sfGFP of the three plasmids, we developed a weak blue light induction system, which is mainly consist of a blue light plate and Pulse Width Modulation (PWM) module powered by USB. The size of the light plate is 20cm*20cm, the blue wavelength is 470nm. As the intensity of the commonly used blue light is higher than what we need in our experiment, the PWM module was employed here to adjust the intensity of light to about 5W/m2.
FIG.2 The self-made weak blue light induction system
The recombinant DH5a cells harboring the blue-light inducible plasmids were cultivated at 37℃ to OD600=0.6-0.8, then cells were exposed to the self-made blue light induction system for 4 hours, and the control ones without blue-light were covered by aluminium foil. The cell density (OD600) and the fluorescent intensity of sfGFP were detected every 1 h. The results are shown as follows.
FIG.3 The relative mRNA level of GFP of PAVVDH-Pc, PAVVDH-J2301 and PAVVDH-porin by RT-qPCR
As shown in Figure 3 that porin promoter exhibited a higher fluorescence, a wider dynamic range and better sensitivity when induced by blue light than the native PC promoter and J23101 promoter. Therefore, the plasmid PAVVDH-porin was selected for our further studies, but J231010 promoter is also effective to trigger the blue-light induction.The induction effect of blue-light was also confirmed by confocal, and after blue-light induction, numerous cells with green fluorescence were observed in the microscopy (Figure 7)
FIG.7 Engineered cells was observed to show green fluorescence after blue-light induction
References
[1] ROMANO E, BAUMSCHLAGER A, AKMERIÇ E B, et al. Engineering AraC to make it responsive to light instead of arabinose [J]. Nat Chem Biol, 2021, 17(7): 817-27.
[2] RAMAKRISHNAN P, TABOR J J. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli [J]. ACS Synth Biol, 2016, 5(7): 733-40.
[3] ONG N T, TABOR J J. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range [J]. Chembiochem, 2018, 19(12): 1255-8.
[4] OHLENDORF R, VIDAVSKI R R, ELDAR A, et al. From dusk till dawn: one-plasmid systems for light-regulated gene expression [J]. J Mol Biol, 2012, 416(4): 534-42.
None |