Composite

Part:BBa_K4387986

Designed by: Nathalie Weibel   Group: iGEM22_UZurich   (2022-09-29)
Revision as of 19:35, 5 October 2022 by Nathi (Talk | contribs)


Monovalent nanobody expression with the HlyA secretion signal (VHH#2B)

The hemolysin A secretion machinery is a one-step secretion system (T1SS), originally isolated from uropathogenic E. coli strains. It comprises three main peptides, the inner membrane proteins HlyB and HlyD, and the outer membrane protein TolC. Together, these three proteins build a continuous channel through which originally the HlyA toxin is secreted in a one-step manner. Scientists have identified the secretion signal and were able to secrete various proteins of different sizes with this secretion machinery. [1]

This composite part contains an anti-TNFα nanobody fused to a myc-tag and the HlyA-tag required for the secretion with the hemolysin A secretion system BBa_K4387979. The expression of the monovalent nanobody is under the control of the inducible pBAD system, followed by the T7 RBS. The myc-tag was required for the characterization of the secretion and functionality of the nanobody. The nanobody inserted in this part is the monovalent candidate VHH#2B BBa_K4387996. [2]


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 1205
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1650
    Illegal BglII site found at 2229
    Illegal BamHI site found at 1144
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 979
  • 1000
    COMPATIBLE WITH RFC[1000]


Characterization

Western blot

We double transformed the common lab strain MC1061 with the high copy plasmid containing this composite part required for induced nanobody expression, and the medium copy number plasmid containing the composite part BBa_K4387987 needed for the secretion system. Liquid overnight cultures of the transformed strain were grown and induced by adding the appropriate amount of arabinose. On the next day, the cells were centrifuged, and the supernatant was run on a gel. To see if nanobodies of the correct size have been secreted, we conducted a Western blot detecting the myc-tag fused to the nanobodies with anti-myc antibodies (Figure 1).

As seen in figure 1, we received a band, labelled as N1, with the size of approximately 45 kDa which fits the expected size of the nanobody candidate VHH#2B together with the myc-tag and HlyA-tag. We can therefore assume that the bacteria were able to secrete whole nanobodies.


---Figure 1---


ELISA

To proof that the secreted nanobodies not only have the correct size but are also able to elicit their TNFα-binding abilities, we performed an ELISA (Figure 2). Adalimumab, a monoclonal anti-TNFα antibody already used in the clinics to treat IBD patients, served as a positive control (wells D1-2), and a sybody against a membrane protein was the negative control (wells D3-4). We could show that the transformed E. coli MC1061 is able to secrete functional anti-TNFα nanobodies. Successful binding of nanobody VHH#2B is seen in wells A1-2.


---Figure 2 (ELISA MC1061)---


Alternative Chassis

We double transformed the probiotic strain E. coli Nissle 1917 with both plasmids and performed the same experiments as described above. Figure 3 shows the successful secretion of nanobody VHH#2B and figure 4 the binding capability of the secrete monovalent nanobody to TNFα.

---Figure 3 and 4---



[edit]
Categories
Parameters
None