Coding

Part:BBa_K4083006

Designed by: Arsen Orazbek   Group: iGEM21_NU_Kazakhstan   (2021-10-18)
Revision as of 20:32, 21 October 2021 by Arsenorazbek (Talk | contribs)


rhlB with SacI and SalI sites


The rhlB gene is responsible for the production of rhamnosyltransferase called RhlB in Pseudomonas aeruginosa.

Usage and Biology

P. aeruginosa is a gram-negative bacillus and opportunistic pathogen. It secretes rhamnolipids - the rhamnose containing glycolipid biosurfactant. These biosurfactants are used by P. aeruginosa to emulsify the oil substances for easy digestion. Thus, rhamnolipids can increase the availability of fats which can be important in many different areas like petroleum, bioremediation, cosmetics, food, agriculture, etc. [1] However, due to the toxicity and infectiousness of P. aeruginosa, other alternative organisms are tested. Currently, genetically engineered Pseudomonas putida has more promising results than others. P. putida only lacks two enzymes for mono-rhamnolipid production: RhlA and RhlB. These enzymes are encoded by rhlA and rhlB coding regions in rhlAB operon. It was previously thought that rhlA and rhlB forms heterodimer, however, further research showed that they act independently from each other [2].

Our team planned to extract rhLA and rhlB genes from P.aeruginosa and to insert them into pRGPDuo2 plasmid obtained from Gauttam, R. [3] We developed the new approach to increase the P. putida's rhamnolipid synthesis by adding nadE gene which encodes NAD synthetase. This way, we hoped to see more rhamnolipid production in engineered P. putida.

The rhamnosyltransferase B (RhlB) catalyzes the reaction between 3-(3-hydroxyalkanoyloxy)alkanoic acid and dTDP-L-rhamnose which forms mono-rhamnolipid [1].

800px-RhlA_rhlB_pathway.png

Figure 1. RhlA and RhlB metabolic pathway


Part functionality

We used our assembled rhlB primers to extract the nadE gene. (https://parts.igem.org/Part:BBa_K4083016, https://parts.igem.org/Part:BBa_K4083018). Obtained genes were amplified in a PCR machine. Then, these PCR products were analyzed in the gel electrophoresis experiment:

RhlB_emhasized.jpg

Figure 2. Gel electrophoresis of PCR products.


It can be observed that rhlB genes were properly extracted as their bands are located below 1kbp which is near the actual size of the nadE gene (883bp). The smears in each well can result from the high concentration of primers, we learned from our mistake and tried to lower the concentration.

Next, these gels were eluted, and collected genes were inserted into the pRGPDuo2 plasmid. To incorporate nadE genes, we digested plasmids with NheI, SacI, SalI restrictases, and T4 ligase. These plasmids with incorporated nadE gene were electroporated into Pseudomonas putida and Pseudomonas aeruginosa. Unfortunately, due to the lack of time from the COVID-19 situation and late reagents delivery, we were not able to properly insert our genes into P. putida. However, we managed to cultivate P. aeruginosa in kanamycin in LB agar. Then, we extracted these engineered plasmids, and double digested them by SacI and SalI restrictases:

NadE%2Bplasmid_emphasized1.jpg

Figure 3. Gel Electrophoresis of extracted plasmids with genes


In this picture, C well contains pRGPDuo2+nadE which was double digested. The base pair length corresponds to the actual length of pRGPDuo2 and nadE.

Reference

[1] Chong, H., & Li, Q. (2017, August 5). Microbial production of rhamnolipids: opportunities, challenges and strategies. Microbial Cell Factories. https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-017-0753-2

[2] Wittgens, A., Kovacic, F., Müller, M. M., Gerlitzki, M., Santiago-Schübel, B., Hofmann, D., Tiso, T., Blank, L. M., Henkel, M., Hausmann, R., Syldatk, C., Wilhelm, S., & Rosenau, F. (2016). Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Applied Microbiology and Biotechnology, 101(7), 2865–2878. https://doi.org/10.1007/s00253-016-8041-3

[3] Gauttam, R., Mukhopadhyay, A., & Singer, S. W. (2020). Construction of a novel dual-inducible duet-expression system for gene (over)expression in Pseudomonas putida. Plasmid, 110. https://doi.org/10.1016/j.plasmid.2020.102514

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 1172
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 65
    Illegal NgoMIV site found at 786
    Illegal NgoMIV site found at 899
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None