Part:BBa_K3759019
mLCC-linker-BsLA
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 261
Illegal EcoRI site found at 1079 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 261
Illegal EcoRI site found at 1079
Illegal NheI site found at 193 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 261
Illegal EcoRI site found at 1079 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 261
Illegal EcoRI site found at 1079 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 261
Illegal EcoRI site found at 1079 - 1000COMPATIBLE WITH RFC[1000]
Usage
It has been well known that the surface of PET film is hydrophobic, and the surface of mLCC is hydrophilic. By constructing the mLCC-linker-BsLA fusion protein, the PET degradation efficiency will be enhanced enormously, due to the unique properties of amphiphilicity and self-assembly of hydrophobin BslA. Also, as BslA was extracted from bacteria and was a bacterial hydrophobin, it shows a better fusion with mLCC, which help the increment of the PET degradation efficiency of mLCC-linker-BslA.
Biology
LCC is a leaf-branch compost cutinase[1] and a kinetically robust protein[2]. A research published on Nature came up with a mutant enzyme, mLCC[1] that hydrolyzes 90% of PET in plastic bottles in just 10 hours. This is more efficient than any previous PET hydrolase, and more importantly, the resulting monomers- ethylene glycol and terephthalic acid have the same properties as the monomers found in petrochemical materials.
None |