Part:BBa_K2924016
Promoter fliC from the Escherichia coli genome
Short-chain fatty acid sensitive promoter FliC
Usage and Biology
The promoter fliC was published as a sensitive promoter for short-chain fatty acids, especially for butyrate (C4:0). This promoter was isolated from the Escherichia coli wild type genome. In the wild type the short-chain fatty acids have an impact on the flagellar expression. The PfliC is repressed by leucine-responsive regulatory protein (Lrp). Butyrate can enhance the expression of the flagellar expression like leucine which is a ligand of Lrp. Difference between thus enhancers is that the promoter fliC is only sensitive for the butyrate and not for the leucine 1
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Characterization
The promoter was tested for the sensitivity to butyric acid in the culture medium by combining the promoter to an eYFP (BBa_E0030) 2 as a reporter gene in the composite part BBa_K2924017. The concentrations of butyric acid were from 0.5 mM to 20 mM.
The experiment showed that the fluorescence doesn't grow with higher concentrations of butyric acid. Surprisingly the fluorescence from the empty vector control rises with higher concentrations while the PfliC shows a falling tendency.
Thessaly 2020's Characterization
The sensitivity of pFliC in the other SCFAs: Acetate and Propionate
Aim
The Monitoring System of Amalthea comprises three separate modules. We chose to extensively characterize the Prom Module before working with it for the proof of concept. Briefly, the Prom Module is a NOT-GATE that is activated due to the absence of Short-Chain Fatty-Acids (SCFAs). Its key element is a SCFA-inducible promoter, pFliC, which is mainly activated by butyrate. While researching its properties, we realized that it was characterized for its sensitivity to butyric acid, only in a limited way.
Background
- In order to accomplish this aim, we tested pFliC using a range of concentrations spanning three orders of magnitude. Finally, we evaluated the pFliC’s function using three reporter genes, eCFP, eGFP, and sfGFP to provide a more comprehensive characterization
- We used E. coli strain MC1061, as it is the workhorse chassis for our system.
Results
References
- [1]: Toru Tobe,* Noriko Nakanishi, and Nakaba Sugimoto “Activation of Motility by Sensing Short-Chain Fatty Acids via Two Steps in a Flagellar Gene Regulatory Cascade in Enterohemorrhagic Escherichia coli” INFECTION AND IMMUNITY, Mar. 2011, p. 1016–1024
None |