Coding

Part:BBa_K554008

Designed by: UNICAMP EMSE Brazil team   Group: iGEM11_UNICAMP-EMSE_Brazil   (2011-09-21)
Revision as of 05:14, 27 September 2011 by Neshich.iap (Talk | contribs)

Hemolysin D - HlyD

HlyD is part of the hemolysin secretion system ([http://2011.igem.org/Team:UNICAMP-EMSE_Brazil/Project#Device_3:_Secretion_system Device 3, Protein Secretion System]), very important to export the proteins produced inside bacteria and that must act in targets outside (such as IL-12 and IL-10). HlyD acts as a membrane fusion or adaptor protein, consisting of a short cytoplasmic domain at the N-terminus followed by a membrane anchor and a large periplasmic domain; it is believed to establish specific links between the outer and the inner membrane components of the system. This system is composed of 4 essential parts: the C-terminal signal sequence of alpha-hemolysin (HlyA, which will be linked to the export target protein), the two specific translocator proteins HlyB and HlyD and the outer membrane protein [BBa_K554009 TolC].

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1318
    Illegal AgeI site found at 1375
  • 1000
    COMPATIBLE WITH RFC[1000]



Usage and Biology

You can see a representation of this device acting in the schema below: HlyB gene and product are shown as a symbolic cilinder in orange.

UNICAMP EMSE secretion device schema.jpg

Representation of device 3, the protein secretion system, in a Jedi bacteria that contains Device 1 (Adrenaline sensor/IL-12 producer). To export a protein, the bacteria must have the HlyD, HlyB and TolC proteins and the target protein must have a signal sequence (HlyA tail). In this case, the target protein to be secreted is IL-12.

A more realistic schema of ABC transport system is shown below:

UNICAMP EMSE secretion ABC.jpg
[edit]
Categories
Parameters
None