Part:BBa_K3081008
pBAD-dCas9-J23119-R1+
This composite part is the principal design of the inducible CRISPR-based DNA replication interference system, with the 20 bp sgRNA targeting to the R1+ DnaA box on E.coli genome replication initiation region, OriC. In natural situations, R1+ is a high affinity box for DnaA binding. By blocking the binding of DnaA protein to R1+ box, severe arrest and inhibition of genome replication initiation is achieved.
For more detailed information, see BBa_K3081058
Design
Based on CRISPR-interference method for transcription inhibition, we develop a novel approach for prokaryotic genome replication interference (CRISPRri). Hence, a 20-bp sgRNA is designed to be complementary to OriC, the genome replication origin (Figure 1). Instead of site-directed mutations one by one, CRISPRri allows for 20-bp scan each time. Although CRISPRri requires a PAM ("NGG") sequence to execute its function, we found a high occurrence frequency of PAM in the region of replication origin and all available sgRNAs can cover 76.2% (221 out of 290) of OriC.Seven different targeting sites for dCas9 is designed to test the effect on cell growth. We characterized M+ box in detail.
Figure1. Designed targeted box of CRISPRri and observation methods. Functional DNA boxes located on the genome replication origin. The diagram includes high-affinity DnaA binding boxes (R1, R2 and R4), IHF binding site and region for DNA unwinding. Low-DnaA-binding-affinity boxes, R3 and M, are not shown here. Among these boxes, utilized in the experiment are R1, R3, M, IHF binding box and a target box located at the unwinding site (MR13). Another target box, which is located at the linker sequence between M and R2, is also designed. Control group is poly-adenine.
Properties
To precisely record the bacteria growth under stable conditions, a microfluidic chip is developed to adapt to observed features of bacteria (Figure 2). All repeat groups are under flow of the same culture to ensure that the experiment results will not be affected by irrelevant external conditions. We have pointed out that interference of genome replication initiation would result in longer cell cycle and cell number doubling time. Here we take a 90 um * 90 um microscopic view each repeat group for cell counting every half an hour. It turns out that CRISPRri targeted to different boxes on OriC results in variant levels of cell doubling time extension, even though intervals between these boxes are only tens of base pairs. This is consistent with our expectations based on literatures, that functions and essence of different DNA boxes on the OriC and their contributions to genome replication vary a lot. Combined with known mechanism in DNA replication initiation, it is found out that our results accord with the DnaA binding affinity reported previously. High DnaA affinity boxes, like R1 and R3, were shown to have severe inhibition effect when targeted by dCas9. For typical low affinity box, like M box, the effect of CRISPRri is much milder. The only exception is R4, which was reported to be a high-affinity box but shows slight effect on cell growth.
Figure2. Microscopic GIFs of bacteria transformed with CRISPRri system targeted to M+ boxes from microfluidic system. Transformed Top 10 strain is transferred to M9 medium in the ratio of 1:10 after overnight cultivation in LB medium. About 2 hours after transferring, bacteria in its log phase is precipitated by 5000-rpm centrifuging for 4 min and is re-suspended by M9 medium arabinose. Re-suspended bacteria are injected into the chip and observed and recorded continuously for 10 hours, under constant flow of 1 mL/16 hours.
Development, Characterization and Optimization of CRISPR-Based DNA Replication Interference (CRISPRri)
we finely tuned the CRISPRri on multiple aspects , including plasmid copy number, inducer, targeted boxes and other extension for wider and smarter use of the system. Cell number doubling time, nucleo-cytoplasmic ratio, morphology and irrelated protein productivity are seen as the outputs of the system and are all well described and tuned.
It has been pointed out that longer cell cycle is mainly caused by a longer time to initiate the DNA replication. Since that there is still normal biochemical synthesis and metabolic reactions occurring in the cell, temporary blocking of genome replication would result in a bigger mass per cell unit. Nucleic acid staining enables us to observe the distributions of nucleoids in single cell under laser scanning confocal microscope. As before, we use poly-adenine as the sgRNA control group. We found a decrease in average nucleo-cytoplasmic ratio when treated with CRISPRri targeted to OriC (Figure 3).
Experiment
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 1205
Illegal NheI site found at 5459
Illegal NheI site found at 5482 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1470
Illegal BamHI site found at 1144 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 979
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 961
None |