Composite

Part:BBa_K2973007:Design

Designed by: Thodoris Kontogiannis   Group: iGEM19_Thessaly   (2019-08-17)
Revision as of 18:10, 17 August 2019 by Tkontogiannis (Talk | contribs)


32B Toehold Switch_β-lactamase_no signal peptide


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

The toehold switch sequence was taken from Pardee et al., 2016 . Beta-lactamase needs to be truncated in its N-terminal end in order to work properly. Therefore, we deleted the signal peptide from its sequence in order to do our in vitro experiments


Source

Pardee, Keith, et al. “Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components.” Cell, vol. 165, no. 5, 2016, pp. 1255–1266., doi:10.1016/j.cell.2016.04.059.

References

Pardee, Keith, et al. “Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components.” Cell, vol. 165, no. 5, 2016, pp. 1255–1266., doi:10.1016/j.cell.2016.04.059.

Green, Alexander A., et al. “Toehold Switches: De-Novo-Designed Regulators of Gene Expression.” Cell, vol. 159, no. 4, 2014, pp. 925–939., doi:10.1016/j.cell.2014.10.002.

Qureshi, Sohail A. “β-Lactamase: an Ideal Reporter System for Monitoring Gene Expression in Live Eukaryotic Cells.” BioTechniques, vol. 42, no. 1, 2007, pp. 91–96., doi:10.2144/000112292.

Boehle, Katherine E., et al. “Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics.” ACS Sensors, vol. 3, no. 7, 2018, pp. 1299–1307., doi:10.1021/acssensors.8b00163.