Part:BBa_K3185006
SPYCatcher -> sfGFP -> LCI KR-2
Usage and Biology
LCI is a protein from Bacillus subtili. The paper shows that it can bind to polypropylene(PP)[1].
Another paper shows the improved variant, LCI-KR2(Y29R and G35R; variant KR-2)[2]. Its affinity is 5.4±0.5 times stronger than natural LCI.
We used LCI-KR2 for binding protein to PP. We inserted superfolder GFP (sfGFP) which folding interval is shortened by improving natural GFP on the N-terminus of LCI (BBa_I746916). By doing so we wanted to do the binding assay with fluorescence. Moreover, we put SpyCatcher(BBa_K1159200)[ on N-terminus of sfGFP because we used SpyTag/SpyCatcher system to bind it to other parts.
This part has four tags. First is 6×His-tag inserted on the N-terminus of SpyC for protein purification. Second is MYC-tag inserted between sfGFP and Spy-Catcher to detect it by using the antibody. The third is a TEV protease site and we put it into two regions because it was used for protein purification in the paper[3].
We put it between BamHI site and Ndel site on pET11-a. The expression plasmids were introduced into BL21(DE3) and expressed by T7 promoter/ T7 RNAP system. Ni-NTA agarose was used for the purification.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NotI site found at 1174
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 460
Purification
Expression
- Cells were grown in 200ml LB media (100μg/ml Ampicillin) at 37oC shaking at 140 rpm to an OD600 of 0.5, verifying via a spectrophotometer.
- Protein was expressed in 0.1mM IPTG for 2hours.
SDS-PAGE
Result
References
1 Rübsam, K., Stomps, B., Böker, A., Jakob, F., and Schwaneberg, U. (2017).
Anchor peptides: A green and versatile method for polypropylene functionalization.
Polymer (Guildf). 116, 124–132.
2 Rübsam, K., Davari, M.D., Jakob, F., and Schwaneberg, U. (2018).
KnowVolution of the polymer-binding peptide LCI for improved polypropylene binding.
Polymers (Basel). 10, 1–12.
3 Rübsam, K., Weber, L., Jakob, F., and Schwaneberg, U. (2018).
Directed evolution of polypropylene and polystyrene binding peptides.
Biotechnol. Bioeng. 115, 321–330.
None |