Generator

Part:BBa_K741002

Designed by: Wuyang Chen   Group: iGEM12_USTC-China   (2012-07-24)
Revision as of 09:33, 20 October 2019 by SUNYUHAN (Talk | contribs)

plac-RBS-GFP-T

Lac promoter with GFP gene downstream. LacI or glucose can repress the expression of GFP while lactose and IPTG can activates it.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 870

Initially, we use IPTG to activate the promoter plac. However, we find that the leak expression of plac is quite high. Even without the existence of IPTG, GFP expresses. This is because there are no lacI genes on the plasmid bones PSB1C3. And K12 strains can not express enough lacI to repress the expression of plac. We look into some documents and find that glucose can repress the expression of plac(see the character of the plac in the lactose operon).Therefore, we set four experimental groups, adding glucose with concentration of 500mM, 800mM, 1000mM, 1000mM of IPTG and a blank group with nothing added.

USTC2012Result1 副本.png

From figure 1, we can see the unit fluorescence intensity of experimental groups with glucose added is lower than the blank group, because glucose represses the expression of plac, which reduces the expression of GFP.

At the beginning, we can’t observe the activating effect of IPTG on plac, which we ascribe to the unstability of the promoter plac. About 90 minutes later, the unit fluorescence intensity of experimental groups with IPTG added is higher than the blank group, which indicates IPTG’s activation on plac.

The difference of the unit fluorescence intensity between the experimental groups with different concentrations of glucose added is not strictly related to the increasing amount of glucose, because glucose affects the growth and metabolism of E.coli, which brings uncertainty to our experiments.

About 3 hours later, the difference of the unit fluorescence intensity between the groups abates, because of the consumption of glucose.

Data

                                                         Fluorescence intensity
                                                         plac-RBS-GFP-T
t/min M9 medium 0 500mM glucose 800mM glucose 1000mM glucose 1000mM IPTG
Parallel 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
0 11.801 197.047 198.876 190.953 202.614 203.782 202.702 200.39 202.035 204.525 206.516 206.355 206.741 179.988 210.315 205.464
45 13.386 214.145 213.602 219.416 223.437 241.267 224.909 244.257 235.427 243.904 224.783 235.979 239.014 209.009 214.669 224.21
90 11.541 273.664 245.629 250.211 305.733 317.547 313.495 299.869 324.396 328.157 331.194 309.167 305.24 261.801 267.369 281.328
135 11.894 344.987 319.854 325.421 370.167 398.352 369.309 372.487 407.478 385.073 333.989 355.2 351.929 314.246 332.2 351.364
180 11.066 424.182 425.564 389.785 415.844 463.184 378.606 447.508 456.27 449.414 311.226 441.902 456.969 338.101 304.146 349.339



Functional Parameters

                                                         OD
                                                         plac-RBS-GFP-T
t/min M9 medium 0 500mM glucose 800mM glucose 1000mM glucose 1000mM IPTG
0 0.045 0.0726 0.0719 0.0733 0.084 0.0829 0.0754 0.0747 0.0807 0.0741 0.0785 0.0883 0.0863 0.075 0.073 0.0781
45 0.0436 0.0793 0.0792 0.0798 0.0932 0.0743 0.0861 0.0834 0.0909 0.086 0.0873 0.1011 0.098 0.0835 0.0813 0.0875
90 0.0435 0.0973 0.0978 0.1004 0.1231 0.1222 0.1165 0.1165 0.1172 0.1166 0.1147 0.131 0.1255 0.0978 0.0974 0.104
135 0.0447 0.1403 0.1367 0.135 0.1611 0.1551 0.1625 0.1601 0.1668 0.1609 0.1852 0.1787 0.1755 0.1463 0.1349 0.1218
180 0.0446 0.1995 0.2064 0.2297 0.2414 0.2346 0.2161 0.239 0.2405 0.2209 0.1884 0.2627 0.23 0.1832 0.2 0.1967




Improvement by JNFLS2019

Overview:


Plac is one of the most common promoter in life science research field. It is mainly composed of Lac operon containing LacO site. LacI repressor, encoded by LacI gene, can bind with LacO site to inhibit the binding of RNA pol to the promoter, so the genes downstream expression are blocked. Serving as inducer, IPTG can bind with LacI inhibitor, making the latter’s conformation changes, so LacI is detached from LacO site, which enables the transcription of downstream genes. BBa_K741002 is a GFP generator driven by Plac promoter, however there is no LacI gene in it. Although the E.coli could express some LacI, it is not enough for inhibition GFP expression. So this GFP generator has some leakage expression, like the designer stated, even some GFP express without IPTG inducer presence. We constructed a new GFP generator (BBa_K3209006) also driven by Plac promoter. It contains LacI gene, which can lower significantly the leakage expression. Both LacI and EGFP are linked to the downstream of Plac, which is regulated by LacI inhibitor and IPTG inducer. Using EGFP as a reporter, its fluorescence intensity appears a lower leakage expression. This new GFP generator could be self-regulated because LacI protein can inhibit its self expression, so that no excessive LacI expression which is considered as waste of resources. We detected the response of this generator to different concentration of IPTG, indicating that it could be inhibited by LacI, and induced well by IPTG.

Results:


First, we compared the inducing effect on the two GFP generators, using different concentration of IPTG. We set 4 groups: 2 experimental groups including old GFP generator (BBa_K741002) and new GFP generator (BBa_K3209006), one negative control without GFP expression and one positive control with constantly GFP expression. At 0h, all groups’ OD600 approximately reaches to 0.8, then certain concentration of IPTG was added to the culture medium, incubated cells at 22℃ overnight. Measure the fluorometric value at 510 nm and OD600 value for each group every 1h, using an automatic microplate reader.

K3209006-1.jpg

Figure 1. The inducing effect of IPTG on the two GFP generators. Relative fluorescent intensity is fluorescence per OD600 standardized with fluorescence per OD600 value of each test group at time = 0, IPTG=0. The figure indicated that both BBa_K741002 and BBa_K3209006 expressed GFP induced by IPTG, and different concentration of IPTG had same inducing trend.

Then we detected the GFP expression under the IPTG existance or absence, using BBa_K741002 and BBa_K3209006, respectively. The results showed that BBa_K741002 expressed a mountain of GFP whether the IPTG present or not, which means that BBa_K741002 had a high leakage expression and lower sensitivity to the IPTG incuction. However, BBa_K3209006 only expressed a high level GFP under IPTG existance. The leakage expression is very low, and it is sensitive to the IPTG induction.

K3209006-2.jpg

Figure 2. The comparison of GFP expression using BBa_K741002 with and without IPTG induction. Relative fluorescent intensity is fluorescence per OD600 standardized with fluorescence per OD600 value of each test group at time = 0, IPTG=0. This figure indicated that the GFP generator (BBa_K741002) has a high keakage expression, and low sensitivity to the IPTG induction.

K3209006-3.jpg
Figure 3. The comparison of GFP expression using BBa_K3209006 with and without IPTG induction. Relative fluorescent intensity is fluorescence per OD600 standardized with fluorescence per OD600 value of each test group at time = 0, IPTG=0. This figure indicated that the new GFP generator (BBa_K3209006) is very sensitive to the IPTG induction, and the GFP leakage expression is very low.
[edit]
Categories
Parameters
None