Composite

Part:BBa_K2967012

Designed by: Rui Wang   Group: iGEM19_NEU_CHINA   (2019-09-30)
Revision as of 04:48, 19 October 2019 by Wangrui (Talk | contribs) (Tuner)


The fixed-gain bio-amplifier

The tunable biological amplifier (Fig. 1) comprises three modular terminals--the input, the output and a gain-tuning input. The device can continuously process the input transcriptional signal with an externally tunable gain (the amplification ratio of the changes in output to input) control.[1]

800px-T--NEU_China--part--amplifier-1.png

Figure 1. The composition of tunable biological amplifier. Transcription input can be amplified through the amplifier.


At first, we construct the fixed-gain amplifier (Fig. 2) for the prework. In order to reduce the impact of exotic microorganisms' colonizations in the intestine and to accelerate the secretion of IL-10 and myrosinase, we found a gain-tunable transcription amplifier in Pseudomonas syringae to tune amplifier the input signal.


To verify the fixed-gain amplification(Fig. 2) capability, we integrated the T7 promoter as the input of the fixed-gain amplifier with GFP as the output. When the transduced transcriptional input from the T7 promoter was connected to our amplifier, the resulting output signal amplitude and dynamic range increased significantly as well as the response sensitivity to the inducer (Fig 3.).

800px-T--NEU_China--part-amplifier-2.png

Figure 2. Diagram for fixed-gain amplifier in pCDFDuet-1 plasmid. T7 promoter, the gene downstream of this promoter will be transcribed when there is T7 RNA polymerase. lacO, the sequence represses the nearby promoter when there is NO inducer (e.g. IPTG). RBS, ribosome binding site. hrpR, hrpS, the activator proteins. PhrpL, a promoter which can be induced by the ultrasensitive high-order co-complex hrpRS. GFP, green fluorescent protein.

320px-T--NEU_China--part-amplifier-f4h.png 320px-T--NEU_China--part-amplifier-f6h.png

Figure 3. Responses of the GFP without fixed-gain amplification (V-GFP) and with fixed-gain amplification (V-AM). The cells are induced by 5 varying concentrations of IPTG (0, 10-6 M, 10-5 M, 10-4 M, 10-3 M) after 4 and 6 hours (A, 4h; B, 6h).


Method

We transformed 3 different vectors into E. coli BL21 competent cell. Amplifier and GFP sequences were inserted into pcdfDuet-1 vectors which were called V-AM and V-GFP. Empty vectors with amplifier or GFP were named VE, VE-GFP and VE-AM. After vector transformation, we grow the transformed competent cells on the LB plates with streptomycin, once we got colonies, we cultured single colony in 5 ml LB medium overnight at 37oC. Next day, we washed bacteria by 1ml PBS and measured the cell growth pattern by photocytometer. In order to read the fluorescent signals, we used LB-S (LB with streptomycin) to dilute bacteria and added them into the black 96-well plate (Cat#: 3916, Corning Corp.) with OD600=0.025 per well. Five different Isopropyl-beta-D-thiogalactopyranoside (IPTG) concentrations (0, 10-3 M, 10-4 M, 10-5 M and 10-6 M) were used to induce the T7 promoter activation and induced for 4 or 6 hours. After IPTG induction, the Enzyme Labeling Instrument were used to detect the green fluorescent signals. The excitation wavelength was 485 nm with the absorption wavelength 525 nm.


In conclusion, the amplifier achieves the desired effect, and the amplification gain is about 2 times. Comparing other amplifiers, this value is still low. In addition, we find that the gene expression process is accelerated with the amplifier, the reporter GFP usually reaching its saturation value after about 4 hours' induction.

Tuner

For the reducing regulation when the inflammation was not so serious, we designed another tunable-gain amplifier with the inhibitor protein, HrpV(Fig. 8). 800px-T--NEU_China--part--K2967012-tuner.png

Figure 8. Diagram for tunable-gain amplifier in pCDFDuet-1. As similar to fixed-gain amplifier in pCDF-duet1 plasmid, this system included PBAD promoter that was enabled to activate hrpV transcription and inhibit the hrpS effector protein function.

To find and show a clear result of tunable amplifier, T7 promoter would be replaced by the constitutive promoter J23109. Unfortunately, we have not constructed this part with the pCDFDuet-1 plasmid during this iGEM year. Our experiment has stalled in the extraction of plasmid DNA, even attempting too many times. After communicating with our adviser and consulting with the synthetic companies, the plasmid might not be suitable for such a part. We tried to construct it on other plasmids. But for the time limitation, we built the Tuner Model to modify the tunable-amplifier in our “gut firemen” instead. (details about the Model, please click here, http://2019.iGEM.org/Team:NEU_CHINA/Model)

Reference

[1]Jovanovic,M., James,E.H., Burrows,P.C., Rego,F.G.M., Buck,M. and Schumacher,J. (2011) Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat. Commun., 2:177.



Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 2102
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1312
    Illegal BsaI.rc site found at 3047
    Illegal SapI.rc site found at 1945


[edit]
Categories
Parameters
None