Composite

Part:BBa_K2573000

Designed by: Amanda Kuang   Group: iGEM18_Waterloo   (2018-08-03)
Revision as of 02:28, 18 October 2018 by Froggyinthewater (Talk | contribs) (Characterization of MetE Coding Device)


MetE Coding Device

Usage and Biology

Methionine is an essential amino acid for E.coli growth, and the MetE gene is essential for methionine synthesis. It encodes for an enzyme that catalyzes the final step of de novo methionine biosynthesis without using an intermediate methyl carrier. For optimal MetE function, vitamin B12 should not be present, as it functions as a MetE repressor.

Biosynthesis of Methionine Mechanism


This part is the MetE gene cassette under the inducible LacI promoter, designed to be a MetE coding device.

A 2.4kb fragment containing the MetE gene from plasmid pSKA397 was cloned into Bba_J04450 via PCR and NEBuilder HiFi DNA Assembly.


REFERENCES: Pejchal, Robert, and Martha L Ludwig. “Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication.” PLOS ONE, Public Library of Science, journals.plos.org/plosbiology/article?id=10.1371%2Fjournal.pbio.0030031.

“Escherichia Coli K-12 Substr. MG1655 MetE.” MetaCyc Parathion Hydrolase, biocyc.org/gene?orgid=ECOLI&id=EG10584.



Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1864
  • 1000
    COMPATIBLE WITH RFC[1000]


Characterization of MetE Coding Device

We transformed this BioBrick (BBa_K2573000) into E. coli strain JT2. JT2 has MetE in its genome, under the CcaS/R promoter. However, this strain does not contain genes encoding CcaS/R, meaning it is unable to express MetE.

BBa_K2573000 in JT2 was grown in M9 medium with and without methionine. Since methionine is essential for bacterial growth, and JT2 is a methionine knockout, growth of JT2 in a methionine deficient medium indicates that the MetE BioBrick functions as intended. Empty JT2 cells were also grown in M9 with and without methionine, to confirm that the MetE gene in the JT2 genome is non-functional. BBa_J04450 in E. coli DH5a cells, which contain MetE in the genome, were also grown in the same media as a control to show that bacteria are able to grow in the M9 prepared.


UWaterloo BioBrick characterization labelled.png

Figure 1: BioBrick in JT2, empty JT2, and DH5a cells were grown in LB. Overnight cultures of BioBrick in JT2, empty JT2, and DH5a were rinsed 3x with M9 to remove residual LB.


UWaterloo BioBrick characterization labelled 2.png

Figure 2: Each strain (BioBrick in JT2, empty JT2, DH5a) was inoculated in M9 with and without methionine.


OD 600 after inoculation

- 20ul of overnight culture (washed of LB) inoculated into 5ml M9 (with or without methionine) and appropriate antibiotics:

Sample OD 600nm
JT2 Empty (+ meth) 0.011
JT2 Empty 0.012
BBa_K2573000 (+meth) 0.011
BBa_K2573000 0.010
BBa_J04450 (+meth) 0.005
BBa_J04450 0.006


Biobricksfinalcharacterization.png

Figure 3: Growth of each strain in M9 with or without methionine


OD 600 after 10h of growth in 37 degree incubator

Sample OD 600nm Growth
JT2 Empty (+ meth) 1.262 Positive
JT2 Empty 0.0752 Negative
BBa_K2573000 (+meth) 1.237 Positive
BBa_K2573000 1.311 Positive
BBa_J04450 (+meth) 1.420 Positive
BBa_J04450 1.506 Positive


RESULTS

The empty JT2 was able to grow in M9 with methionine, but not able to grow in M9 without methionine, showing that JT2 is unable to grow in methionine deficient media. However, when transformed with this BioBrick, (BBa_K2573000) JT2 was then able to grow in M9 without methionine.

[edit]
Categories
//cds/enzyme
//plasmid
Parameters
None