Coding
T18 domain

Part:BBa_K1638004

Designed by: Jens Sivkr Pettersen   Group: iGEM15_SDU-Denmark   (2015-05-10)
Revision as of 21:12, 10 October 2019 by Pinerol (Talk | contribs)

Team Grenoble-Alpes 2019

IMPROVE OF THE BACTERIAL ADENYLATE CYCLASE TWO HYBRID

Purpose

The goal here is to prove that a membrane bacterial two hybrid (mBATCH) can be generated and can be functional by improving two biobricks from the original BACTH system:
BBa_K1638004 : T18 domain of adenylate cyclase from Bordetella pertussis
BBa_K1638002 : T25 domain of adenylate cyclase from Bordetella pertussis

In order to do this, 4 biobricks are created:
K3128017 : OmpX Wild-Type (WT) protein fused with T18 subpart of Bordetella Pertussis AC under constitutive promoter
K3128018 : OmpX WT protein fused with T25 subpart of Bordetella Pertussis AC under constitutive promoter
These two biobricks constitute the negative condition of the mBACTH (free sub-parts condition). OmpX proteins are fused to the adenylate cyclase sub-parts at their N-terminal ends. The fusion protein move freely in the bacterial outer membrane, but they are not forced to get closer by any mean.
The reconstitution of the adenylate cyclase in this condition is only due to random occurrence between both parts.
The signal measured here is considered as background noise.

K3128026 : OmpX WT protein fused with Leucine-zipper (LZ) and T18 sub-part of Bordetella Pertussis AC under constitutive promoter
K3128027 : OmpX WT protein fused with Leucine-zipper and T25 sub-part of Bordetella Pertussis AC under constitutive promoter
These two biobricks constitute the positive condition of the mBACTH (Leucine Zipper condition). OmpX proteins are fused to the AC subparts at their N-terminal ends, and a leucine-zipper sequence is added between the signal peptide of OmpX -to express the recombiant protein in the external membrane- and OmpX gene, in order to force the physical closeness of OmpX proteins.
Leucine zippers are peptides which contain a hydrophobic leucine residue at every seventh position. They are able to dimerize through interactions between their helices.
This is a strategy to force physical closeness. Hence the AC activity will be restored through the interaction of both subparts and will induce the cAMP dependant signalling cascade.

The reporter gene used in the system is the NanoLuciferase enzyme present in the BBa_K3128001 under a cAMP inducible CAP-dependent lactose promoter.
Two major factors affect this promoter :
IPTG, known to have a positive effect on the transcription of the gene by removing the lac repressor from the DNA.
CAP, known to have a positive effect on the transcription when it binds cAMP by helping the fixation of RNA-polymerase on the DNA
To be able to bind the CAP sites on the promoter, the CAP protein has first to interact with a cAMP molecule. As soon as two cAMP-CAP complexes are bound to the CAP sites, the RNA Polymerase initiates the transcription.

800px-T--Grenoble-Alpes--contribution-figure-1.png

ATP is not naturally present in large amount in the periplasm of the bacteria, thereby it has to be added in the bacteria medium to enhance its periplasm diffusion and to be available for the adenylate cyclase catalytic reaction.

Materials and Methods

Bacterial Strain

The assays are made with streptomycin resistant BTH101 E.Coli strain, which are cya- bacteria.
In this strain, the endogenous adenylate cyclase gene has been deleted in order to obtain a bacterium that is unable to produce endogenous cAMP, thus avoiding the presence of potential false positives and making the system more sensitive.

Design of the plasmids

To compare the efficiency of the BACTH system created with the initial BACTH biobricks BBa_K1638004 (containing the T18 subpart) and BBa_K1638002 (containing the T25 subpart), quantification results in BTH101 strain are needed.
pJT18 contains the T18 sub-part ; it has an ampicillin resistant gene and the pMB1 replication origin.
pJT18 contains T18 subpart of Bordetella Pertussis AC under constitutive promoter.
pJT25-Nlc contains the T25 sub-part and the NanoLuciferase gene under the control of the plac promoter. It has a kanamycin resistant gene and the p15A replication origin.
pOT25-Nlc contains NanoLuciferase reporter for BACTH assay and T25 subpart of Bordetella Pertussis AC under constitutive promoter.
Those constructs will be the negative condition that show the background noise of the initial mBACTH system.

pJT18-ZIP is similar to pJT18-Nlc with the addition of a Leucine Zipper sequence fused at the end of T18.
pJT18-ZIP contains T18 subpart of Bordetella Pertussis AC fused with Leucine-zipper under constitutive promoter.
pJT25-Nlc-ZIP is similar to pJT25-Nlc with the addition of a Leucine Zipper sequence fused at the end of T25.
pJT25-Nlc-ZIP contains NanoLuciferase reporter for BACTH assay and T25 subpart of Bordetella Pertussis AC fused with Leucine-zipper under constitutive promoter.
Those constructs will be the positive condition that show how the signal increases if both sub-parts are brought together with the BACTH.
800px-T--Grenoble-Alpes--BACTH_Plasmide_1.png
Genetic constructions of pJT18, pJT25-Nlc, pJT18-ZIP and pJT25-Nlc-ZIP plasmids used to test the cytoplasmic BACTH in BTH101 strain.

For the mBACTH, as three biobricks have to be inserted in the bacterium to constitute the entire system, genetic constructions have been made in order to co-transform only two compatible plasmids :
pOT18-Nlc contains OmpX gene fused to the T18 sub-part and the NanoLuciferase gene under the control of the plac promoter; it has an ampicillin resistant gene and the pMB1 replication origin.
pOT18-Nlc contains NanoLuciferase reporter for BACTH assay and OmpX WT protein fused with T18 subpart of Bordetella Pertussis AC under constitutive promoter.
pOT25 contains OmpX gene fused to the T25 subpart. It has a kanamycin resistant gene and the p15A replication origin.
pOT25 contains OmpX WT protein fused with T25 subpart of Bordetella Pertussis AC under constitutive promoter.
Those constructs will be the negative condition that show the background noise of the initial mBACTH system.

pOT18-Nlc-ZIP is similar to pOT18-Nlc with the addition of a leucine-zipper sequence between the OmpX signal peptide and the OmpX gene.
pOT18-Nlc-ZIP contains NanoLuciferase reporter for BACTH assay and OmpX WT protein fused with LZ and T18 subpart of Bordetella Pertussis AC under constitutive promoter.
pOT25-ZIP is similar to pOT25 with the addition of a leucine-zipper sequence between the OmpX signal peptide and the OmpX gene.
pOT25-ZIP contains OmpX WT protein fused with LZ and T25 subpart of Bordetella Pertussis AC under constitutive promoter.
Those constructs will be the positive condition that show how the signal increases if both sub-parts are brought together with the mBACTH.
800px-T--Grenoble-Alpes--mBACTH_plamides.png
Genetic constructions of pOT18-Nlc, pOT25, pOT18-Nlc-ZIP and pOT25-ZIP plasmids used to test the membrane BACTH in BTH101 strain.

Transformation

For the assay with the membrane BACTH, BTH101 are co-transformed either with pOT18-Nlc and pOT25 plasmids : negative condition,
or pOT18-Nlc-ZIP and pOT25-ZIP plasmids : positive condition.

The assay

To make sure that the OmpX-T18 and OmpX-T25 are expressed in the external membrane, OmpX proteins have been muted to be able to integrate an unnatural amino acid in one of their extracellular loops by implementing the amber stop codon TAG. A specific tRNA can then add this azide-functionalized amino acid in the protein, which is able to fix a DIBO group - these modified proteins are called COMPs.
COMPs are fused with T18 or T25 subparts and have to be expressed at the external membrane of the bacteria. To ensure this, microscopy observations have been done with a DIBO group coupled with a fluorescent molecule : FITC.
Results of the COMP, COMP-T18 and COMP-T25 proteins marked show a great protein expression on the external membrane. (Link vers les résultats).

The bioluminescence intensity produced by the NanoLuciferase enzyme is analyzed.
Several conditions are tested with 100µL, 25µL, 5µL and 1µL of bacteria at OD600nm = 0.6 : respectively 48E+06 CFU, 12E+06 CFU, 24E+05 CFU and 48E+04 CFU .
In addition, times of induction are tested from 0 to 360 minutes with 30 minutes increments.
Cultures of the different recombinant bacteria are incubated overnight at 18°C under shaking in order to induce an optimal COMPs proteins production [http://2015.igem.org/Team:TU_Eindhoven cf Team Eindhoven 2015].
The low temperature allows a native protein folding and membrane insertion to avoids as much as possible the formation of inclusion bodies.

Then cultures are diluted at OD600nm = 0,4 and let to grow to OD 600nm = 0.6 before induction.
The induction is performed by addition of 0,5 mM IPTG and 2mM of ATP for different periods of time. Bacteria are incubated at 37°C under shaking (180 rpm) to allow an optimal NanoLuciferase production.

After induction, 1, 5, 25 or 100µL of bacteria are distributed in a 96 wells black NUNC plate (ThermoFisher) the Nano-Glo® Luciferase Assay assay from Promega® is performed (More informations) :
“Prepare the desired amount of reconstituted Nano-Glo® Luciferase Assay Reagent by combining one volume of Nano-Glo® Luciferase Assay Substrate with 50 volumes of Nano-Glo® Luciferase Assay Buffer.For example, if the experiment requires 10 mL of reagent, add 200μl of substrate to 10 mL of buffer.”
The bioluminescence is then observed with a luminometer by measuring Relative Luminescence Units (RLU).

Several measures are made in the same well in order to reduce the incertitudes induced by the luminometer.
In order to test the reproducibility of our measures the means of 3 differents experiments with 3 measurements per well are measured with the calculation of standard deviation for each.

Several controls are performed:
∅ IPTG, ∅ ATP : To check the promoter leakage without any induction.
∅ IPTG, 2 mM ATP :To check if the addition of extracellular ATP helps the production of cAMP and to check if addition of ATP modifies the promoter leakage.
0,5 mM IPTG, ∅ ATP : To check if adding extracellular ATP is needed for protein expression.
0,5 mM IPTG, 2 ATP : Is the normal condition, it correspond to the measure at 360min.

Results


The mBACTH following results are obtained with 5µL of bacteria at OD600nm = 0.6 : 24E+05 CFU.
With 1µL (48E+04 CFU), the bioluminescence intensity was too low and the measurement were not discriminant enough.
Above 25µL of bacteria (12E+06 CFU), the signal was quickly saturated when the induction time increased and the luminometer could not give workable measures.
5µL (24E+05 CFU) is a good compromise, it’s enough to have a discriminant signal and sensitive enough to work as a small drop in our NeuroDrop system.
iGEM Grenoble-Alpes device NeuroDrop is designed for the use of small volumes like drops. Proving that 5µL of bacteria are enough to detect a significant difference in bioluminescence intensity between negative and positive condition is an encouraging result. Other reagents (see the full system) will be added to the drop of bacteria and its volume should not exceed 20µL for the engineers machine to work. 5µL of bacteria seem to be appropriate.


T--Grenoble-Alpes--mBACTH_Table_1.png
Means of measurements obtained through 3 differents experiments with 3 measurements per well for each condition of the mBACTH generated with either
BBa_K3128018 and BBa_K3128017 : free sub-parts : negative condition,
or BBa_K3128026 and BBa_K3128027 : Leucine Zipper : positive condition.
Blank was done with 24E+05 CFU of untransformed BTH101 (RLU = 300) and subtracted from the measurements.


With 1,48E+06 RLU of bioluminesce produced in the 0,5 mM IPTG condition compared to 9,02E+05 in the condition without IPTG and without ATP, it seems that IPTG increase slightly the transcription.
Additionally, with 2,55E+0,6 RLU of bioluminescence produced in the without ATP and 2mM ATP condition compared to 9,02E+05 in the without ATP and IPTG condition, it seems that ATP have a significant* effect on transcription.
This was expected because of the lack of ATP in the periplasm of the bacteria. Thereby, adding a great amount of ATP in the medium able to diffuse in the periplasm help the cAMP production by the periplasmic adenylate cyclase.
Obviously, those observations don’t prove anything but give clues on the way the system operates.
* A T test was done for the values of time above 90 min and led to a p-value below 0.01.

800px-T--Grenoble-Alpes--mBACTH_Graph_1.png
Means of measurements obtained through 3 differents experiments with 3 measurements per well for each condition of the mBACTH generated with either
BBa_K3128018 and BBa_K3128017 : free sub-parts : negative condition,
or BBa_K3128026 and BBa_K3128027 : Leucine Zipper : positive condition.
Blank was done with 24E+05 CFU of untransformed BTH101 (RLU = 300) and subtracted from the measurements.
* A T test was done for the values of time above 210 min and led to a p-value below 0.05.

From 0 to 120 minutes of induction time, the bioluminescence produced by the two strains is similar.
At 120 minutes, the two curves start to split and give rise to a significant difference between the free sub-parts : negative condition and the Leucine Zipper: positive condition from around 210 minutes.

The discrepancy keeps increasing upon induction time, thus highlighting the efficiency of the amplification signal thanks to the signalling cascade and the strong reporter gene.

From 0 to 120 minutes of induction time, the bioluminescence produced by the two strains is similar.
At 120 minutes, the two curves start to split and give rise to a significant difference between the free sub-parts (negative condition) and the Leucine Zipper (positive condition) from around 210 minutes.

The discrepancy keeps increasing upon induction time, thus highlighting the efficiency of the amplification signal thanks to the signalling cascade and the strong reporter gene.


Conclusion

There is a significant difference between the negative and the positive condition of the mBACTH assay,
suggesting that a Bacterial Adenylate Cyclase Two-Hybrid can be successfully performed in the periplasm of bacteria which property is required for the sensing and detection of extracellular molecules.

User Reviews

UNIQ36f4516c1368c764-partinfo-00000000-QINU

UNIQ36f4516c1368c764-partinfo-00000001-QINU
[edit]
Categories
Parameters
None