Part:BBa_K3076100
Assay : Test for copper absorption ability on E.coli transformed with CgMT
Abstract of experiment
We utilized pET-151/TOPO vector to drive the expression of CgMT coding sequence under T7 promoter inside BL21(DE) E. coli strain. Then, the bacteria transformants will be tested inside copper (II) sulphate added culture medium to measure their copper absorption efficiency along time.
Graph 1: Percentage decrease of copper concentration along time
Results
Fig. 1 The percentage decrease of copper concentration in the culture medium In the graph, the percentage change of copper(II) ion concentration along time is shown. The copper added media were incubated with IPTG+ (IPTG induced CgMT expression E. coli), IPTG- (CgMT expression E. coli without IPTG added) and Empty (Empty vector control E. coli). IPTG+ showed ~30% decrease, IPTG- showed ~18% decrease and empty vector control showed ~14% decrease.
The result shows that IPTG+ (blue) had a significant increase in copper removal ability when compared with IPTG- control (red) and Empty control (green). The purple curve shows the blank control in which no bacteria were inoculated in the copper added medium.
It indicates that CgMT expression contributes to the copper absorption ability of the E. coli strains (BL21). Although IPTG- also showed a statistical difference when compared with empty vector control, we believe it was due to the small sample size or leaky expression of the T7 promoter. Further investigation is required. This assay was repeated twice and the error bars represent standard deviation which indicates the distribution of data range.
Future work
Since our assay method is relatively insensitive when compared with using advanced techniques such as mass spectrometry, we are going to collaborate with university labs to seek a more sensitive way of measurement and thus we can generate a model with higher precision.
Secondly, we aim to create an E. coli absorbent of heavy metals so we are going to combine CgMT with metal exporter knockout modification and further increase the absorption ability of E. coli.
None |