Part:BBa_K2033004
(3S)-3-[(2-oxo-3-phenylpropyl)amino]oxolan-2-one (3-phenyl-HSL) Sender- BraI
Short Description
This is a synthase enzyme that produces the AHL quorum sensing molecule (3S)-3-[(2-oxo-3-phenylpropyl)amino]oxolan-2-one
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 83
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 412
- 1000COMPATIBLE WITH RFC[1000]
Short Description
This part produces the AHL quorum sensing molecule (3S)-3-[(2-oxo-3-phenylpropyl)amino]oxolan-2-one (3-phenyl-HSL). This AHL synthase is paired with a constitutive Tet promoter and mCherry.
Bra System
AHL quorum sensing functions within two modules. The first module, the "Sender," must be induced by certain environmental conditions, usually population density of surrounding organisms. This will begin production of the AHL by the cell, which is then detected by the second module, the "Receiver." Once a certain threshold of AHLs is breached, the Receiver will cause the expression or silencing of certain genes to achieve the desired purpose of the communication, whether it is the production of GFP or to increase growth rate.
The Bra system originates from the aquatic bacterium Paraburkholderia kururiensis, a species of proteobacteria. It produces a 3-phenyl HSL, also known as (3S)-3-[(2-oxo-3-phenylpropyl)amino]oxolan-2-one. The structure is shown below:
This AHL notably has a phenyl group on the third carbon of the acyl tail, which will serve as a unique binding domain for the transcription factor. This is very similar to the p-coumaroyl AHL produced by the Rpa system, with one less hydroxyl group.
The BraI part arises from the proteobacteria Paraburkholderia kururiensis. The designed part by Ryan Muller was cloned into competent DH5AT E. coli cells. These were ligated into the psB1C3 vector and plated, producing the following gel:
An optical density test was conducted on the produced BraI construct to determine if the AHL is produced. The plate reader ran an 8-hour read from 580-610nm, indicating the presence of the mCherry fluorescent molecule. The AHL gene lies upstream of the mCherry gene, so successful production of mCherry is a good indicator that the AHL molecule is being produced. A positive growth curve was found for the BraI construct over the 8-hour read. The initial dip in mCherry levels was likely the result of the transfer of the cells from an aerated, incubated environment to a 96-well plate. However, overall, mCherry production increased over time, suggesting that the BraI Synthase had been produced in E. coli.
Safety
This section aims to provide safety information and suggestions about the BraI part. The greatest concern from this part is the activation of pathogens via crosstalk. According to Integrated DNA Technologies, quorum sensing genes are not considered dangerous by themselves, as they do not directly cause the creation of a new pathogenic strain. They may contribute to pathogenicity, but so do synthetic promoters. So, the actual AHL molecules are the chief concern.
Crosstalk Partners
BraI is was shown by Ahlgren (2011) to induce members of the genus Bradyrhizobium. This would include the Bja network, which we also studied. Other crosstalk partners likely exist.
Disposal
In order to properly dispose of (3S)-3-[(2-oxo-3-phenylpropyl)amino]oxolan-2-one, the sample should be autoclaved. This AHL does not possess a beta-ketone group in the acyl tail, and so, bleach is not capable of effectively degrading it. Further details about proper AHL disposal can be found here: http://2016.igem.org/Team:Arizona_State/WhitePaper.
Other Considerations
No other safety information is available for IV-HSL.
None |