Protein_Domain
ODD
Part:BBa_K1456005
Designed by: safa tapan Group: iGEM14_ATOMS-Turkiye (2014-07-21)
Revision as of 15:17, 23 October 2014 by Sayinorhan (Talk | contribs)
Oxygen dependent degradation(ODD) domain from HIF-1a
- The second mechanism includes a few understructure elements called TetR-VP16 complex and two different plasmids, pTet-off and pTRE vectors. In pTet-off plasmid, PCMV constitutive promoter with medium strength codes TetR-VP16 protein complex which can bind its respond element present in second plasmid, pTRE. Tetracyclin respond element (TetRE) is a protein binding domain which allows the binding of TetR component of the protein complex. Whereas, VP16 component works as a transcription activator for the weak constitutive promoter (PminiCMV) existing in pTRE vector. TetR-VP16 protein complex can activate this weak promoter in pTRE vector.
- ODD is a peptide about 200 amino acid long which includes a hydroxylation site of prolyl hydroxylase. In normal oxygen levels, hydroxylation from this site causes peptide to be targeted by ubiquitine-proteosome degradation system to be eliminated swiftly. However, in hypoxic conditions, hydroxyl subgroups cannot be added to ODD domain which results as the survival and accumulation of peptide and the components cohesive to it. (Huang et al. 1998)
- We aim to insert an additional peptide called oxygen dependent degradation domain (ODD domain) between TetR and VP16 components. With this mechanism, TetR-ODD-VP16 complex can only initiate the transcription of only weak promoter in hypoxic conditions because of the degradation of the complex by proteasome in oxygen presence. ith this, protein complex is expected to behave like a hypoxia inducer.
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
[edit]
Categories
Parameters
None |