Primer

Part:BBa_K1465109

Designed by: iGEM-Team Bielefeld 2014   Group: iGEM14_Bielefeld-CeBiTec   (2014-10-05)
Revision as of 03:47, 18 October 2014 by J droste (Talk | contribs)

dcuB fwd

dcuB fwd

Usage and Biology

C4 Carboxylate Antiporter DcuB

Under anaerobic conditions E. coli cells use different alternative electron acceptors instead of oxygen. Partially the bacteria use fumarate respiration, whereby fumarate is reduced into succinate. There are also other potential less-oxidizing substances for bacteria to release their electrons, for example anorganic compounds like nitrate (NO3-) or sulfate (SO42-).(<a href="#Gottschalk1986">Gottschalk et al., 1986</a>) Fumarate respiration leads to succinate excretion through the C4 carboxylate transporter DcuB. It is an antiporter which exchanges fumarate against succinate under anaerobic conditions. Under aerobic condition there is usually no succinate release observed. In connection to the carbon dioxide fixation in our second module we planned on working under oxygen limiting conditions, hence effective carbon dioxid fixation is possible. So in case of oxygen limiting conditions, there could occured partial fumarate respiration in E. coli. Besides there was shown activity of DcuB antiporter in the presence of high fumarate concentrations (<a href="#Janausch2001">Janausch, 2001</a>). To achieve an effective electron uptake and prevent any succinate excretion, the C4 carboxylate antiporter DcuB has to be knocked out in our E. coli strain.

We planned a targeted knockout of the dcuB gene in E. coli KRX using the <a href="http://www.genebridges.com/storage/Manuals_PDF/K006%20Ecoli%20Gene%20Deletion%20Kit-version2.3-2012.pdf" target="_blank">Genebridge Red/ET-System</a>. In the same step we are going to integrate the outer membrane porine OprF (<a href="https://parts.igem.org/Part:BBa_K1172507">BBa_K1172507</a>) into the bacterial chromosome under controll of a constitutive promotor (<a href="https://parts.igem.org/Part:BBa_J23104">BBa_J23104</a>). This ensure the permeability of the outer membrane and avoid a plasmid overload of the bacteria, because for our system the outer membrane porines are indispensable.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Results

Construction of an electrophilic E. coli strain

Our first module deals with the construction of an E. coli strain, which is able to accept electrons stimulating its metabolism. We considered two different electron transfer systems: direct and indirect electron transfer.
Direct electron transfer in bacteria is a very complex and not completely cleared up so far. Due to this we focused on the indirect electron transfer via a mediator, which is reduced at the electrode in a electrobiochemical reactor and would be reoxidized again by bacterial cells.(Park et al., 1999) In gram-negative bacteria E. coli there are two membranes with a periplasmatic space between them, which has to be overcome in the course of the electron transfer.
We worked on three different mediators: neutral red, bromphenol blue and cytochromes. Additionally we constructed an electropholic E. coli strain, which shows an increased metabolic activity growing with electric power, which has been proven in our H-cell reactor (Park et al., 1999).
The electron transfer system consists of different steps. First of all the reduced mediator has to cross the outer membrane of the E. coli cell. For that we used the outer membrane porine OprF (BBa_K1172507) provided by the iGEM Team Bielefeld-Germany 2013. Crossing the periplasmatic space, the mediator adsorb at the inner membrane of the E. coli cell. The mediator functions as an electron donor for the over expressed fumarate reductase. In this step succinate is produced in the cytoplasm. Reduction of fumarate into succinate creates a loop into the citric acid cycle, because succinate would be reoxidized again by the succiante dehydrogenase. Succinate excretion is avoid, because of the knockout of the C4 carboxylate transporter DcuB. In the reaction of succinate dehydrogenase electrons are transferred to FAD+ generating FADH2, which enter the electron transport chain. The electron transport facilitates proton translocation over the inner bacterial membrane. The proton motoric force is used by ATP synthase. Generated ATP and reductive power in the bacterial cell leads to an increasing metabolic activity.

E. coli KRX ΔdcuB::oprF strain

We investigated the effect of the C4 carboxylate transporter DcuB knockout on E. coli KRX. Furthermore we showed the integration of the outer membrane porine OprF (BBa_K1172507) into the bacterial genome by replacing the gene of E. coli C4 carboxylate antiporter DcuB. So we did knockout and insertion in a one-step process. The successful knockout of the DcuB antiporter and simultaneous insertion of BBa_K1172507 was shown with PCR analysis, DNA sequencing and phenotypic investigation via Biolog analysis and anaerobic cultivation in M9 minimal media with fumarate supplemented. Substrates and products were analyzed by HPLC. The electrobiochemical behavior of E. coli KRX with knocked out C4 carboxylate antiporter DcuB was tested in a H-cell reactor.

Preparation of knockout deletion cassette

We decide to knock out the C4 carboxylate transporter DcuB to prevent succinate export. Besides we inserted the outer membrane porines OprF (BBa_K1172507) into the genome. Both could be realized with the Genebridge RedET-System. For simultaneous knockout and insertion a deletion cassette had to be designed and established. We used overlap extension PCR to amplify the complete deletion cassette (Bryksin & Matsumura, 2010). We used kanamycin as an antibiotic selective marker amplified from the plasmid Flp705 using the Genebridge RedET-System protocoll. We designed the primers (BBa_K1465107, BBa_K1465108, BBa_K1465109, BBa_K1465110) with complementary 5´extensions for both fragments to connect them in overlap extension PCR. The amplified deletion cassette has homologous sites for recombination with the dcuB gene in the E. coli KRX genome.

Verification of knockout and deletion cassette


Figure 1: Results of the colony PCR for
analysis of dcuB genome area
analyzed via agarose gelelectrophoresis.
E. coli KRX wildtype band
is shown on the rigth of about 2391 bp.
E.coli KRX ΔdcuB::oprF band is shown
on the left at 4046 bp.
The gene of the C4 carboxylate transporter DcuB, which exchange fumarate against succinate, has a size of 1341 bp. We amplified the genome area of the dcuB gene with primers (dcuB_del_kon1 and dcuB_del_kon2), which bind 530 bp upstream and 520 bp downstream of the dcuB gene. When using the E. coli KRX wildtype as a template the resulting PCR product has a size of 2391 bp, which could be demonstrated by agarose gelelectrophoresis. However the E. coli KRX knockout strain (E.coli KRX ΔdcuB::oprF) showed a 4046 bp PCR product analyzed by agarose gelelectrophoresis. Figure 1 shows the result of the agarose gelelectrophoresis with E. coli KRX wildtype and the modified strain E.coli KRX ΔdcuB::oprF.

The PCR product of E.coli KRX ΔdcuB::oprF genome amplified with primer dcuB_del_kon1 and dcuB_del_kon2 (4046 bp) and is composed of the antibiotic cassette (1637 bp), BBa_K1172507 (1359 bp) and upstream and downstream spacer elements (520 bp and 530 bp).

DNA sequencing of deletion cassette from E.coli KRX ΔdcuB::oprF showed the expected results.