Regulatory
M-B

Part:BBa_K774001:Design

Designed by: NRP-UEA-Norwich   Group: iGEM12_NRP-UEA-Norwich   (2012-06-25)
Revision as of 08:40, 26 September 2012 by Rkelwick (Talk | contribs) (Bacterial)

Our hybrid promoter hopes to add to the systems already in the registry by creating a hybrid promoter that combines the bacterial promoter PyeaR and the mammalian CArG element , both of which respond to exogenous nitrogenous species. Combining the two would allow a more modular nitric oxide sensor that can be used in mammalian and bacterial cells interchangeably.

Six new biobricks produced and submitted to the registry with characterisation from fluorescence-based experiments.

Parts produced from this project:

Bacterial-Mammalian/B-M (PyeaR-CArG) Hybrid Promoter -- Mammalian-Bacterial/M-B (CArG-PyeaR) Hybrid Promoter -- B-M + eCFP -- B-M + RFP -- M-B + eCFP -- M-B + RFP

Our main project has resulted in the production of a hybrid bacterial and mammalian promoter optimised for induction by nitric oxide, nitrates and nitrites. We have ligated PyeaR, a known bacterial promoter and Part BBa_K216005 (Cambridge 2009) in the parts registry, with its mammalian counterpart, CArG. The resulting hybrid promoter has been synthesised in two orientations; PyeaR (bacterial, B) upstream of CArG (mammalian, M), nicknamed (B-M); and CArG upstream of PyeaR (M-B). These orientations were submitted to the parts registry as our first two biobricks.

Bacterial

File:NRPPyeaR.png

A graphical representation of PyeaR. In the higher image PyeaR's activity is being repressed by both Nar and NsrR preventing transcription and the ultimate expression of a reporter. In the lower image nitrate/nitrite molecules have inhibited the activity of Nar, and nitric oxide has inhibited activity of NsrR, allowing for transcription to occur and subsequent expression of a reporter.