Coding
myc-gene I

Part:BBa_K627007:Design

Designed by: iGEM11 Potsdam_Bioware   Group: iGEM11_Potsdam_Bioware   (2011-09-21)
Revision as of 23:15, 21 September 2011 by Bienfied (Talk | contribs) (References)

Fusion of c-myc-tag and gene III


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

Gene III was amplified from the vector pak100 bla KDIR using the following primer
Forward: TAAGCTTCTAGATGGCCGGCGAGCAGAAGCTGATCTCTGAGGAAGACCTGGGTGGTGGCTCTGGTTCC
Reverse: TGCTTAGACGTCCTGCAGCGGCCGCTACTAGTATTAACCGGTAGACTCCTTATTACGCAGTA

Because c-myc-gene III is a fusion part (RFC25), no start codon is needed. Before the c-myc sequence a NgoMIV restriction site is located which has compatible overhangs to AgeI restriction sites. The ligation of AgeI and NgoMIV overhangs will result in a scar coding for threonine and glycine. So genes of interest containing AgeI restriction sites can be easily fused to gene III without frame shift. The gene III sequence contains no stop codon because there is one located between AgeI and SpeI recognition site directly merged behind gene III sequence.

Source

The gene-III-protein is a coat protein from the filamentous bacteriophage M13.

References

References

Fuh G., Sidhu S.S. (2000). Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Lett. 480(2-3):231-4

Rakonjac J., Feng J., Model P. (1999). Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol. 289(5):1253-65