Composite

Part:BBa_K515100

Designed by: Atipat Patharagulpong   Group: iGEM11_Imperial_College_London   (2011-09-06)
Revision as of 18:26, 13 September 2011 by Nikkikapp (Talk | contribs)

IAA biosynthetic genes under control of the Pveg2 promoter

The IAM pathway is a two step pathway which generates indole-3-acetic acid (auxin) from the precursor tryptophan. IAA tryptophan monooxygenase (IaaM) BBa_K515000, catalyzes the oxidative carboxylation of L-tryptophan to indole-3-acetamide which is hydrolyzed to indole-3-acetic acid and ammonia by indoleacetamide hydrolase (IaaH) BBa_K515001 . There are several different pathways that produce indole-3-acetic acid.[2]

IaaM and IaaH originate from P.savastanoi and have been expressed in E. coli previously, and shown to secrete auxin into cell supernatant.[1]

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 547
    Illegal BamHI site found at 1492
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 254
    Illegal NgoMIV site found at 2835
  • 1000
    COMPATIBLE WITH RFC[1000]


References

[1]Palm, CJ et al., 1989. Cotranscription of genes encoding indoleacetic acid production in Pseudomonas syringae subsp. savastanoi. Journal of Bacteriology, 171(2), pp.1002-1009.

[2]Spaepen S. et al., 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. Federation of European Microbiological Societies Microbiology Reviews , 31, pp.425–448.

[edit]
Categories
//function/biosynthesis
Parameters
chassisE. coli DH5α
controlK515010
device_typepathway
input_stryptophan
originP. savastanoi
outputindole-3-acetic acid
resistancechloramphenicol