Coding
AlkB

Part:BBa_K5291048:Design

Designed by: Yuning Wu   Group: iGEM24_BNUZH-China   (2024-10-01)
Revision as of 06:29, 2 October 2024 by Kortybones (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


AlkB2


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 657
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.

Source

Pseudomonas aeruginosa PAO1

References

[1]Guo, X., et al. (2023). "Structure and mechanism of the alkane-oxidizing enzyme AlkB." Nat Commun 14(1): 2180.
[2]Yuan, M., et al. (2020). "Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell." Angewandte Chemie. 59(23): 8969-8973.